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• Device scaling 
• Interconnect scaling
• More implications for design and architecture
• Readings and project assignments

Lecture 02: CMOS scaling theory
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Minimum feature size (gate length) 

• Human hair 100um
• Amoeba 15um
• Red bood cell 7um
• HIV virus 0.1um
• Buckyball 0.001um

gate 
length
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MOSFET dielectric effective thickness

Current oxide thickness ~ 1.0 – 2.0nm thickness → 3 – 4 atomic layers of oxide

1.2nm
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Processor supply voltages
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Average transistor price per year

Average price of a transistor is 0.1 micro cent!
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Lithography tool cost

• Fewer and fewer companies can afford to have their own 
foundries ⇒ many turn fabless and outsource their manufacturing
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Transistors shipped per year

In 2003, Moore estimates that the number of transistors 
shipped is 10 quintillion – about 100 times the number of ants 
estimated to be stalking our planet
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Worldwide semiconductor revenues

Worldwide annual chip sales: ~$220B (opto: $17B – processors 30B – DRAM 
24B – flash $16B); EDA (CAD tools) sales: ~$4B (2% of total)

Box office: worldwide ~$23B US ($9B); tickets + dvds + tv rights: ~ $44B

Computer/video games (software): worldwide ($19B) US ($7B)

Worldwide total software sales $383B

Worldwide pharmaceutical sales: $550B

Just Exxon + Chevron 2005 total sales: ~$371B + $193B = 564B
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Device scaling
(very idealistic NMOS transistor)

doping increased by 
a factor of S
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Depletion width ⇒ scales down by S

Increasing the channel doping density increases the channel barrier 
⇒ improves isolation between source and drain during OFF status
⇒ permits distance between the source and drain regions to be scaled

(scaled down by L)
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Implications of ideal device scaling
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Actual scaling trends deviate from ideal
[Nowak’02]

Vt and Vdd are deviating from classic scaling with respect to Lgate

Vt and Vdd are rather following scaling trends of Vdd
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Electrical consequences of actual scaling

Empirically, delay = Cgate Vdd / ISAT 
follows ideal scaling

Lgate is dropping more rapidly than tox
⇒ more scaling down in Cgate

Vdd scales down by less than S
Cgate scales down by more than S
⇒ switching power (per unit area) is 
no longer constant ⇒ scales up

per unit
width
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Dynamic power was further scaling up in 
microprocessors

[Gelsinger’01]

Reason 1: Frequency was doubling 
(×2) rather than scaling by just 43% 
(by pursuing more pipeline stages; 
each stage has less logic)
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increasing in size (see slide 32)
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Scaling of standby power

Even if Vt is kept constant after scaling,  Poff scales up by S if tox is 
scaled down by S

Vt must be scaled down if VDD is scaled down (otherwise ISAT is 
weaker and transistor is slow)

Standby power would further increase by 10× for every 0.1V 
reduction of Vt
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bottleneck
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Scaling (VDD & Vt) reduces dynamic power, 
but increases static power (per gate)

[Nowak’02]

At 25oC, Extrapolations suggest that subthreshold power will 
equal dynamic power at Lgate = 20nm

bottleneck
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Power/performance tradeoffs

Threshold voltage (Vt)
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[Taur, 01]
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Scaling of lithographic light source 
wavelength

[source: Okazaki]

projection printing
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Scaling of variability

180nm 130nm

Die-to-die and within-die variations are getting worse but no 
concrete data  is available

[Onodera’06]

bottleneck
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Interconnect scaling
w

h
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t

l
w: width of interconnect (layer dependant)
s: spacing between interconnects with same layer
h: dielectric thickness (spacing between interconnects in two 
vertically adjacent layers)
l: length of interconnect
t: thickness of interconnect
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Constant thickness scaling versus reduced 
thickness scaling
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Implications of ideal interconnect scaling
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Interconnect delay is dominating gate delay

bottleneck
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ITRS predictions imply global wires will most 
likely be buffered to reduce their delay

gate delay
local (scaled)

wiresglobal
(repeaters)

global
(no repeaters)

bottleneck

• Delay of local interconnects is relatively scaling well; global wires 
are a problem



26

Interconnect distribution is roughly the 
same; more local than global wires
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With scaling the reachable radius of a buffer 
decreases → we need more and more buffers

A corner-to-corner (BL-UR) wire in Itanium (180nm) requires 6 
repeaters to span die

Repeaters consume chip area; consume power; add vias

repeaters required to 
buffer Itanium global 

interconnects

bottleneck
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It takes an increasing number of clock 
cycles to span a die

[Matzke, TI’97]

⇒Wires need to be pipelined (repeaters with states) to 
maintain synchronization in face of latency variations

⇒Use networks that route packets instead of global wires 
(network-on-a-chip NoC)
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Scaling of transistor delays (with ~constant 
power density) → scale frequency 

[Gelsinger’01]
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Pipelines depths were getting shorter 
→ even larger frequency scaling

Number of gate delays in a clock period

Clock frequency was doubling every generation (not just 
increasing by 43%) 
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Die size trends

[source De/Brokar’99]
Borkar’99
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Total power was increasing (mostly because 
of 2× frequency + die) until we hit a “wall”

[Gelsinger’01]

Intel VP Patrick Gelsinger (ISSCC 2001)
“If scaling continues at present pace, by 2005, high speed 
processors would have power density of nuclear reactor, 
by 2010, a rocket nozzle, and by 2015, surface of sun.”
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Uniprocessor performance (SPECint)

Uniprocessor performance improvement is 
slowing down (or even stopped)
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Leakage power is becoming a bottleneck →
increase in power density (w/o freq increase)

dynamic

static
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Another wall: external memory latency

[Gelsinger’01]
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Reading assignments for next lecture

• “Turning Silicon on Its Edge,” IEEE Circuits  & Devices 
Magazine, Jan/Feb’04. ⇒ Yiwen

• “SOI technology for the GHz era,” IBM J. Res. & Dev., 
Vol. 46. ⇒ Cesare

• “Effect of  increasing chip density on the evolution of 
computer architectures,” IBM J. Res & Dev, Vol. 46. 
⇒ Brendan

• “Repeater scaling and its impact on CAD,” IEEE Trans. 
on CAD, Vol. 23(4)  ⇒ Elif


