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Lecture 02: CMOS scaling theory

Device scaling

Interconnect scaling

More implications for design and architecture
 Readings and project assignments
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MOSFET dielectric effective thickness
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» Current oxide thickness ~ 1.0 — 2.0nm thickness — 3 — 4 atomic layers of oxide
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Processor supply voltages
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Average transistor price per year
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» Average price of a transistor is 0.1 micro cent!




Lithography tool cost
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* Fewer and fewer companies can afford to have their own
foundries = many turn fabless and outsource their manufacturing




Transistors shipped per year
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» In 2003, Moore estimates that the number of transistors
shipped is 10 quintillion — about 100 times the number of ants

estimated to be stalking our planet g




Worldwide semiconductor revenues
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» Worldwide annual chip sales: ~$220B (opto: $17B — processors 30B — DRAM
24B — flash $16B); EDA (CAD tools) sales: ~$4B (2% of total)

» Computer/video games (software): worldwide ($19B) US ($7B)

> Box office: worldwide ~$23B US ($9B); tickets + dvds + tv rights: ~ $44B
» Worldwide total software sales $383B

» Worldwide pharmaceutical sales: $550B

» Just Exxon + Chevron 2005 total sales: ~$371B + $193B = 564B




Device scaling
(very idealistic NMOS transistor) (scaled down by L)
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SiO, Gate Oxide doping increased by

(Good insulator, £_, = 3.9¢) a factor of S

Increasing the channel doping density increases the channel barrier
= Improves isolation between source and drain during OFF status
= permits distance between the source and drain regions to be scaled

264 (W +Vyq)
aN,

Depletion width W, =\/ — scales down by S




Table 4.15 Influence of scaling on MOS device characteristics

Implications of ideal device scaling

Parameter Sensitivity Constant Lateral
Field
Scaling Parameters
Length: L 1/8 1/8
Width: W 1/8 1
Gate oxide thickness: 7, 1/8 1
Supply voltage: Vpp 1/8 1
Threshold voltage: V,,, V', 1/8 1
Substrate doping: IV, S 1
Device Characteristics
B w1 § §
Lt
Current: I, 1/8 N
B(VDD - Vt )2
Resistance: R 1 1/8
Voo
Ids
Gate capacitance: C W, 1/8 1/8
l‘OX
Gate delay: 1 RC 1/8 1/8?
Clock frequency: f 1/t S §?
Dynamic power dissipation (per gate): P | CF?f 1/§? S
Chip area: 4 1/8 1
Power density P/A4 1 S
Current density 1,/A4 N N




Actual scaling trends deviate from ideal

[Nowak’02]
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» V,and Vy, are deviating from classic scaling with respect to L,

» V,and V4, are rather following scaling trends of V4
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Electrical consequences of actual scaling
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Empirically, delay = C e Vyq/ lsat
follows ideal scaling

L.t IS dropping more rapidly than t,,

= more scaling down in Cate
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Dynamic power was further scaling up in
MICroprocessors

[Gelsinger'01]
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Scaling of standby power
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» Even if V, is kept constant after scaling, P scales up by Sift, is

scaled down by S

» V, must be scaled down if V is scaled down (otherwise Ig,; IS
weaker and transistor is slow)

» Standby power would further increase by 10x for every 0.1V
reduction of V, BROWN




Scaling (Vpp & V) reduces dynamic power,
but iIncreases static power (per gate)
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At 25°C, Extrapolations suggest that subthreshold power will
equal dynamic power at L
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Power/performance tradeoffs

higher
active power

<_ ﬁ@ increasing

higher performance
leakage

Power supply voltage (V)

Threshold voltage (V,)
[Taur, 01]




Scaling of lithographic light source
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Scaling of variabllity
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» Die-to-die and within-die variations are getting worse but no
concrete data is available
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Lecture 02: CMOS scaling theory

Device scaling

Interconnect scaling

More implications for design and architecture
 Readings and project assignments




Interconnect scaling

s/ :

w: width of interconnect (layer dependant)

S: spacing between interconnects with same layer

h: dielectric thickness (spacing between interconnects in two
vertically adjacent layers)

|: length of interconnect

t: thickness of interconnect




Constant thickness scaling versus reduced
thickness scaling
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Implications of ideal interconnect scaling

Table 4.16 Influence of scaling on interconnect characteristics

Parameter Sensitivity Reduced Constant
Thickness Thickness
Scaling Parameters
Width: w . 1/8
Spacing: s . [ 1/8
Thickness: ¢ _ _ 1/8 [ 1
Interlayer oxide height: 4 1/§
Characteristics Per Unit Length
Wire resistance per unit length: R,
1 2
—_— § N
wt
Fringing capacitance per unit length: C,, .
- 1 §
5
Parallel plate capacitance per unit length: w
Cop = 1 1
h
Total wire capacitance per unit length: C,, ' (,‘.__5‘r + Cw‘, ' 1 | between 1,8
Unrepeated RC constant . R,C, ' & | between S,
per unit length: 7, | | [ §2
Repeated wire RC delay per unit length: ¢,,, between 1,
(assuming constant field scaling of gates in | \/RCR_C_, Js Js
Table 4.15)
Crosstalk noise F
- 1 §
5
Local/Scaled Interconnect Characteristics
Length: / 1/8
Unrepeated wire RC delay Pt 1 between
[ |1/5,1
Repeated wire delay ¥ Lo between
. 1/
§ 1/8, N1/ 8
Global Interconnect Characteristics
Length: / [ D,
Unrepeated wire RC delay Pt D7 between
7 [ | $D2, 8D/ [ [
Repeated wire delay /A DS between D, ,




Interconnect delay iIs dominating gate delay
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ITRS predictions imply global wires will most
likely be buffered to reduce their delay

Relative Delay

bottleneck

180 130 e0 65
Process Tgchnology Nofle (nm)

gate delay
global local (_Scaled)
(no repeaters) global wires
(repeaters)

 Delay of local interconnects is relatively scaling well; global wires
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Interconnect distribution is roughly the
same; more local than global wires
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With scaling the reachable radius of a buffer
decreases — we need more and more buffers
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bottleneck

repeaters required to
7 buffer Itanium global
interconnects

» A corner-to-corner (BL-UR) wire in Itanium (180nm) requires 6
repeaters to span die

» Repeaters consume chip area; consume power; add vias
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It takes an increasing number of clock
cycles to span a die
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[Matzke, TI'97]

= Wires need to be pipelined (repeaters with states) to
maintain synchronization in face of latency variations

= Use networks that route packets instead of global wires
(network-on-a-chip NoC)
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Scaling of transistor delays (with ~constant
power density) — scale frequency

[Gelsinger’'01]
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Pipelines depths were getting shorter
— even larger frequency scaling

Number of gate delays in a clock period
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Die size trends
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Total power was increasing (mostly because
of 2x frequency + die) until we hit a “wall”

[Gelsinger'01]
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Intel VP Patrick Gelsinger (ISSCC 2001)
“If scaling continues at present pace, by 2005, high speed
processors would have power density of nuclear reactor,
by 2010, a rocket nozzle, and by 2015, surface of sun.”




Uniprocessor performance (SPECInt)
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design: multiple “cores” or
processors per chip
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Uniprocessor performance improvement is
slowing down (or even stopped)
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Leakage power Is becoming a bottleneck —
Increase In power density (w/o freq increase)
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Another wall: external memory latency
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Reading assignments for next lecture

“Turning Silicon on Its Edge,” IEEE Circuits & Devices
Magazine, Jan/Feb’04. = Yiwen

“SOI technology for the GHz era,” IBM J. Res. & Dev.,
Vol. 46. = Cesare

“Effect of increasing chip density on the evolution of
computer architectures,” IBM J. Res & Dev, Vol. 46.

— Brendan

“Repeater scaling and its impact on CAD,” IEEE Trans.
on CAD, Vol. 23(4) = Elif




