Physical Design of Digital Integrated Circuits (EN0291 S40)

Sherief Reda Division of Engineering, Brown University Fall 2006

Lecture 02: CMOS scaling theory

- Device scaling
- Interconnect scaling
- More implications for design and architecture
- Readings and project assignments

Minimum feature size (gate length)

MOSFET dielectric effective thickness

> Current oxide thickness ~ 1.0 - 2.0nm thickness $\rightarrow 3 - 4$ atomic layers of oxide

Processor supply voltages

Average transistor price per year

> Average price of a transistor is 0.1 micro cent!

Lithography tool cost

 Fewer and fewer companies can afford to have their own foundries ⇒ many turn fabless and outsource their manufacturing

Transistors shipped per year

 \succ In 2003, Moore estimates that the number of transistors shipped is 10 quintillion – about 100 times the number of ants estimated to be stalking our planet

Worldwide semiconductor revenues

Worldwide annual chip sales: ~\$220B (opto: \$17B – processors 30B – DRAM) 24B – flash \$16B); EDA (CAD tools) sales: ~\$4B (2% of total)

- Computer/video games (software): worldwide (\$19B) US (\$7B)
- Box office: worldwide ~\$23B US (\$9B); tickets + dvds + tv rights: ~ \$44B
- Worldwide total software sales \$383B
- Worldwide pharmaceutical sales: \$550B
- Just Exxon + Chevron 2005 total sales: ~\$371B + \$193B = 564B

Increasing the channel doping density increases the channel barrier \Rightarrow improves isolation between source and drain during OFF status \Rightarrow permits distance between the source and drain regions to be scaled

Depletion width
$$W_D = \sqrt{\frac{2\varepsilon_{si}(\psi_{bi} + V_{dd})}{qN_a}} \Rightarrow \text{scales down by S}$$

Implications of ideal device scaling

Table 4.15 Influence of scaling on MOS device characteristics					
Parameter	Sensitivity	Constant Field	Lateral		
Scaling Parameters					
Length: L		1/S	1/S		
Width: W		1/S	1		
Gate oxide thickness: t_{ox}		1/S	1		
Supply voltage: V_{DD}		1/S	1		
Threshold voltage: V_{tn} , V_{tp}		1/S	1		
Substrate doping: N_A		S	1		
Device Characteristics					
β	$\frac{W}{L}\frac{1}{t_{\rm ox}}$	S	S		
Current: <i>I</i> _{ds}	$\beta \left(V_{DD} - V_t \right)^2$	1/S	S		
Resistance: R	$rac{V_{DD}}{I_{ds}}$	1	1/S		
Gate capacitance: C	$\frac{WL}{t_{\rm ox}}$	1/S	1/S		
Gate delay: τ	RC	1/S	$1/S^{2}$		
Clock frequency: f	1/τ	S	S^2		
Dynamic power dissipation (per gate): P	CV^2f	$1/S^{2}$	S		
Chip area: A		$1/S^{2}$	1		
Power density	P/A	1	S		
Current density	I_{ds}/A	S	S		

Actual scaling trends deviate from ideal

➢ V_t and V_{dd} are deviating from classic scaling with respect to L_{gate}
 ➢ V_t and V_{dd} are rather following scaling trends of V_{dd}

Electrical consequences of actual scaling

Empirically, delay = $C_{gate} V_{dd} / I_{SAT}$ follows ideal scaling

 $\begin{array}{l} \mathsf{L}_{\text{gate}} \text{ is dropping more rapidly than } \mathsf{t}_{\text{ox}} \\ \Rightarrow \text{ more scaling down in } \mathsf{C}_{\text{gate}} \end{array}$

 V_{dd} scales down by less than S C_{gate} scales down by more than S \Rightarrow switching power (per unit area) is no longer constant \Rightarrow scales up

Dynamic power <u>was</u> further scaling up in microprocessors

<u>Reason 1:</u> Frequency was doubling (×2) rather than scaling by just 43% (by pursuing more pipeline stages; each stage has less logic)

<u>Reason 2:</u> Die sizes were also increasing in size (see slide 32)

Scaling of standby power

Standby power $P_{off} \propto \frac{1}{t_{ox}} e^{t}$

- \succ Even if V_t is kept constant after scaling, P_{off} scales up by S if t_{ox} is scaled down by S
- \succ V_t must be scaled down if V_{DD} is scaled down (otherwise I_{SAT} is weaker and transistor is slow)
- Standby power would further increase by 10× for every 0.1V reduction of V_t

Scaling ($V_{DD} \& V_t$) reduces dynamic power, but increases static power (per gate)

At 25°C, Extrapolations suggest that subthreshold power will equal dynamic power at $L_{gate} = 20$ nm

Power/performance tradeoffs

Scaling of lithographic light source wavelength

BROWN

Die-to-die and within-die variations are getting worse but no concrete data is available

Lecture 02: CMOS scaling theory

- Device scaling
- Interconnect scaling
- More implications for design and architecture
- Readings and project assignments

Interconnect scaling

w: width of interconnect (layer dependant)
s: spacing between interconnects with same layer
h: dielectric thickness (spacing between interconnects in two vertically adjacent layers)
l: length of interconnect
t: thickness of interconnect

Constant thickness scaling versus reduced thickness scaling

reduced thickness scaling

constant thickness scaling

Implications of ideal interconnect scaling

Table 4.16 Influence of scaling on t	interconnec	t characteri	stics
Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Pa	arameters		
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: <i>b</i>		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{ω}	$\frac{1}{wt}$	S ²	S
Fringing capacitance per unit length: $C_{w\!f}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: C_{wp}	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_w	C_{wf} + C_{wp}	1	between 1, S
Unrepeated RC constant per unit length: t_{uu}	$R_w C_w$	S ²	between <i>S</i> , <i>S</i> ²
Repeated wire RC delay per unit length: t_{wr} (assuming constant field scaling of gates in Table 4.15)	$\sqrt{RCR_wC_w}$	\sqrt{S}	between 1, \sqrt{S}
Crosstalk noise	$\frac{t}{s}$	1	S
Local/Scaled Interconnect Characteristics			- f.
Length: /		1/S	
Unrepeated wire RC delay	Ptwu	1	between 1/ <i>S</i> , 1
Repeated wire delay	lt _{wr}	$\sqrt{1/S}$	between $1/S, \sqrt{1/S}$
Global Interconnect Characteristics		-fin	
Length: /		D_c	
Unrepeated wire RC delay	Pt _{wu}	$S^2 D_c^2$	between $SD_c^2, S^2D_c^2$
Repeated wire delay	lt _{wr}	$D_c \sqrt{S}$	between D_c , $D_c \sqrt{S}$

Interconnect delay is dominating gate delay

ITRS predictions imply global wires will most likely be buffered to reduce their delay

• Delay of local interconnects is relatively scaling well; global wires are a problem

Interconnect distribution is roughly the same; more local than global wires

With scaling the reachable radius of a buffer decreases \rightarrow we need more and more buffers

A corner-to-corner (BL-UR) wire in Itanium (180nm) requires 6 repeaters to span die

> Repeaters consume chip area; consume power; add vias

It takes an increasing number of clock cycles to span a die

[Matzke, Tl'97]

- ⇒ Wires need to be pipelined (repeaters with states) to maintain synchronization in face of latency variations
- ⇒ Use networks that route packets instead of global wires (network-on-a-chip NoC)

Lecture 02: CMOS scaling theory

- Device scaling
- Interconnect scaling
- More implications for design and architecture
- Readings and project assignments

Scaling of transistor delays (with ~constant power density) \rightarrow scale frequency

Pipelines depths <u>were</u> getting shorter \rightarrow even larger frequency scaling

BROWN 31

Die size trends

Total power was increasing (mostly because of $2 \times$ frequency + die) until we hit a "wall"

Intel VP Patrick Gelsinger (ISSCC 2001)

"If scaling continues at present pace, by 2005, high speed processors would have power <u>density</u> of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun."

Uniprocessor performance (SPECint)

Uniprocessor performance improvement is slowing down (or even stopped)

Leakage power is becoming a bottleneck \rightarrow increase in power density (w/o freq increase)

Another wall: external memory latency

Lecture 02: CMOS scaling theory

- Device scaling
- Interconnect scaling
- More implications for design and architecture
- Readings and project assignments

Reading assignments for next lecture

- "Turning Silicon on Its Edge," IEEE Circuits & Devices Magazine, Jan/Feb'04. ⇒ Yiwen
- "SOI technology for the GHz era," IBM J. Res. & Dev., Vol. 46. ⇒ Cesare
- "Effect of increasing chip density on the evolution of computer architectures," IBM J. Res & Dev, Vol. 46.
 ⇒ Brendan
- "Repeater scaling and its impact on CAD," IEEE Trans. on CAD, Vol. 23(4) \Rightarrow Elif

