Physical Design of Digital Integrated Circuits (EN0291 S40)

Sherief Reda
Division of Engineering, Brown University
Fall 2006
Lecture 04: Timing Analysis

- Static timing analysis
- STA for sequential circuits
- Delay modeling: devices and interconnects
- Statistical static timing analysis
Propagation delay definition

Definitions:
- rise/fall propagation delay
- rise/fall transition delay (slew (slope): ΔV/transition delay)
Problem: Given a circuit, find the path(s) with the largest delay (critical paths)

• Solution: run SPICE and report the results of the simulation

• Problem: SPICE is computationally expensive to run except for small-size circuits

• WANTED: We need a fast method that produces relatively accurate timing results compared to SPICE
Static timing analysis

All inputs are arrive at time 0

Assuming all interconnects have 0 delay

Each gate has rise/fall delay

slack = arrival time – required arrival time

⇒ paths with negative slacks need to be eliminated!
Finding the critical path through breadth first search

- Initialize queue Q to empty
- for all vertices i in V: nvisit[i]=0;
- Add all primary input vertices to queue Q
- While ($Q \neq 0$)
 - i = top of Q; remove i from Q; computer delay of i
 - for every edge (i, j):
 - nvisit[j]++;
 - if(nvisit[j] == fanin[j]) add j to $Q
STA can lead to false critical paths

- STA assumes a signal would propagate from a gate input to its output *regardless* of the values of other inputs.

• What is critical path delay according to STA?

• Is this path realizable?

 No, actual delay is less than estimated by STA.
Lecture 04: Timing Analysis

- Static timing analysis
- STA for sequential circuits
- Delay modeling: devices and interconnects
- Statistical static timing analysis
Timing analysis of sequential circuits

- d is the propagation delay of a logic path
- $d_{\text{min}} \leq d \leq d_{\text{max}}$
- $\Delta + d_{\text{max}} \leq P - T_s$
 \[\rightarrow d_{\text{max}} \leq P - T_s - \Delta \] (setup time constraint)
- $\Delta + d_{\text{min}} \geq T_h$
 \[\rightarrow d_{\text{min}} \geq T_h - \Delta \] (hold time constraint)
Timing analysis of sequential circuits under presence of clock skew

- s_i and s_j skew of clock at FF i and j
- $d_{\text{min}} \leq d \leq d_{\text{max}}$
- $s_i + \Delta + d_{\text{max}} \leq s_j + P - T_s$
 \[\rightarrow d_{\text{max}} \leq P - T_s - \Delta + s_j - s_i \] (setup time)
- $s_i + \Delta + d_{\text{min}} \geq T_h + s_j$
 \[\rightarrow d_{\text{min}} \geq T_h - \Delta + s_j - s_i \] (hold time)
Sometimes introducing skew can be helpful

- Zero clock skew ($s_i = 0$ & $s_j = 0$) \(\Rightarrow\) clock period = 10ns, $f_{\text{max}} = 100$MHz
- $S_i = -1$ $s_j = 0$ \(\Rightarrow\) clock period = 9ns, $f_{\text{max}} = 111$MHz (no timing violations)
- $S_i = -2$ $s_j = 0$ \(\Rightarrow\) clock period = 8ns, $f_{\text{max}} = 125$MHz (no timing violations)
- Introducing skew also helps minimize the simultaneous switching of FFs \(\Rightarrow\) less load on the P/G network
- STA is relatively easy once we figure out how to calculate gate and interconnect delay
Lecture 04: Timing Analysis

- Static timing analysis
- STA for sequential circuits
- Delay modeling: devices and interconnects
- Statistical static timing analysis
Elmore delay model: An upper bound to actual delay in RC trees

any tree structure

\[t_{pd} \sim R_1 (C_1 + \ldots + C_N) + \ldots + R_N C_N \]

\[t_{pd} \sim \sum_{i=1}^{N} R_i \sum_{j \geq i} C_j \]

- Sum the result of multiplying each resistance by the capacitance down stream from it

- What is the runtime complexity?

[see Gupta/Pileggi’97 for more info]
Switch-level device RC delay models

NMOS model

PMOS model

[source: Weste/Harris]
Modeling the delay of an inverter

Holes have half the mobility of electrons
→ PMOS width = 2× of the NMOS device to get the same current (or resistance) during output rise
→ equal rise and fall delays for CMOS inverter
Gate delay: rise delay

Assumption: interconnect delay is ignored (for the moment)
Gate delay: fall delay

The fall delay is worse than the rise delay in this case.

Fall propagation delay

\[
 t_{pdf} = (2C)\left(\frac{R}{2}\right) + \left[(6 + 4h)C\right]\left(\frac{R}{2} + \frac{R}{2}\right) \\
= (7 + 4h)RC
\]
Gate delay is input pattern dependant

$$t_{pdf} = (6 + 4h) RC$$

⇒ Connect the latest arriving signal closest to the output node whenever feasible
Impact of transition time on gate delay

In addition to capacitive load, input transition time affects
- delay: $\tau_i > 0 \rightarrow \Delta' > \Delta$
- output transition time:
Why does transition time affect delay?

During transition, gate current $< $ saturation current
\rightarrow higher effective output resistance \rightarrow larger delay
∴ Input transition time affects gate delay (and output transition time too!)

\[\text{Gate: } \Delta_{r/f}(C, \tau_i) \]

stored in a lookup table for fast calculation

(total capacitance
(intrinsic + loading + interconnects)
Interconnect delay: the lumped case

\[V_{\text{out}} = V_m (1 - e^{-t/RC}) \]

\[\frac{V_m}{2} = V_m (1 - e^{-t_{pd}/RC}) \]

\[e^{-t_{pd}/RC} = \frac{1}{2} \]

\[t_{pd} = 0.69RC \]

Elmore delay = \(RC \)

Upper bound on delays in RC trees [Pileggi'97]
Interconnect delay: lumped vs. distributed

\[R_i = \frac{rl}{N}, \quad r = \text{resistance per unit length} \]

\[C_i = \frac{cl}{N}, \quad c = \text{capacitance per unit length} \]

\[t_{pd} \sim R_1(C_1 + \ldots + C_N) + \ldots + R_NC_N \]

\[t_{pd} \sim \frac{rl}{N} (\frac{cl}{N} \times N) + \frac{rl}{N} (\frac{cl}{N} \times (N - 1)) + \ldots + \frac{rl \cdot cl}{N \times N} \]

\[t_{pd} \sim rc\left(\frac{l}{N}\right)^2(N + N - 1 + \ldots + 1) \]

\[t_{pd} \sim rc\left(\frac{l}{N}\right)^2 \frac{N(N+1)}{2} \sim rcl^2 \frac{N+1}{2N} \sim \frac{rcl^2}{2} \]
Carry out STA after annotating your circuit with gate/interconnect delays

- Annotate your circuit with gate/interconnect delay, and carry out STA
- Don’t ignore interconnect delay because it is currently responsible for ~80% of total path delays!
Lecture 04: Timing Analysis

- Static timing analysis
- STA for sequential circuits
- Delay modeling: devices and interconnects
- Statistical static timing analysis
In Statistical STA (SSTA), delay is no longer deterministic

- Replace deterministic gate delay by a random delay variable that has a normal pdf
- What is the pdf of $z = \text{max}(x, y)$, where x and y are two random normal variables?
 - z is not normal, but can be approximated reasonable using random variables [Jacobs/Berkelaar’00]
Gate variations impact critical path(s) delay leading to an increase in the *average* delay

- **Intra-chip (within-die) variations**: arises within devices in the same die
- **Inter-chip (die-to-die) variations**: arises between different chips
Assignments for next lecture

Reading assignments:

• Statistical Timing Analysis for Intra-Die Process Variations with Spatial Correlations, ICCAD'03 (Kundan + (Yiwen) (judge))
• Incremental timing analysis, US Patent 5508937 (Cesare)
• Industrial products:
 – Cadence SignalStorm (Elif)
 – Synopsys PrimeTime (Brendan)

Projects overview:

• 10-15 mins presentation on previous work + proposal
• 1½ → 2 page report