Physical Design of Digital Integrated Circuits (EN0291 S40)

Sherief Reda
Division of Engineering, Brown University
Fall 2006
Lecture 07: Floorplanning and Placement

- Introduction to Placement and Floorplanning
- Global Placement
- Legalization and Detailed Placement
- Floorplanning
Placement maps cells onto the layout area such that the total wirelength is minimized.

Why placement and wirelength are important?
As technology scales, wires dominate devices in determining performance and power

- Scaling → more devices and wires → design complexity
- Wire delays relative to device delays have increased by \(~1000\times\) in a span of 8 generations (250nm → 32nm)
 ⇒ reducing wirelength
 → reduces wire delay
 → improves performance
- Reducing wirelength → capacitance → power

How to measure wirelength?
How can we calculate the wirelength?

- HPWL = Half Perimeter Wirelength (more practical)
- HPWL ≤ Steiner length ≤ routing length
The placement problem stated formally

Placement Problem: Given a hypergraph $H=(V, E)$, find a non-overlapping mapping π for the nodes of the hypergraph onto the layout area such that the total HPWL (Steiner length) is minimized.
The placement problem is notoriously hard

- NP-hard [Sahni76]

- Optimal placements can be practically found only for a few components (~20 – 30)

- No approximation algorithms unless $P = NP$ [Queyranne86]

⇒ must rely on heuristic algorithms
⇒ 40+ years of research
Floorplanning and placement

Floorplanning is a small-scale placement problem with large modules.

Placement of standard cells is a large-scale 2-D assignment problem
⇒ determines positions for thousands/millions of standard cells.
Lecture 07: Floorplanning and Placement

• Introduction to Placement and Floorplanning
• Global Placement
• Legalization and Detailed Placement
• Floorplanning
Placement algorithms’ two central questions

• *How to model and minimize wirelength?* (i.e., how to model the interconnections between cells)

• *How to spread the cells?* (how to avoid collapsing of the cells)
Ideal modeling of wirelength

The total wirelength minimization problem: find a position for each cell a position such that the total wirelength (measured by the half-perimeter wirelength) is minimized

$$z = \sum_{e_i \in E} \left(\max_{v_j \in e_i} x_j - \min_{v_j \in e_i} x_j + \max_{v_j \in e_i} y_j - \min_{v_j \in e_i} y_j \right)$$
We will focus on three main placement technologies

I. Placers based on recursive min-cut partitioning
II. Placers based on simulated annealing
III. Placers based on analytical techniques
I. Placers based on recursive min-cut partitioning

Two main questions:

Q₁: How to partition a hypergraph?

Q₂: How to propagate net connectivity information from one block to another?
Q₁. Min-cut placers: how to partition a circuit?

Size: 48

How?

Cut 1 = 4
Size 1 = 15

Cut 2 = 4
Size 2 = 16

Size 3 = 17

[source: I. Markov]
A₁. Fiduccia-Mattheyses (FM) method for finding a min-cut partition

Pass:
- start with all vertices free to move (*unlocked*)
- label each possible move with immediate change in cost that it causes (*gain*)
- iteratively select and execute a move with highest gain, *lock* the moving vertex (i.e., cannot move again during the pass), and update affected gains
- best solution seen during the pass is adopted as starting solution for next pass

⇒ FM:
- start with some initial solution
- perform passes until a pass fails to improve solution quality

[source: I. Markov]
Q₂: Partitioning subcircuits in isolation does not lead to a global optimal; how to fix that?

Case I: Blocks are partitioned in isolation → optimal local partitioning results but far from optimal global results

Case II: Information about cells in one block are accounted for in the other block → local partitioning results are translated to global wirelength results
A₂: Terminal propagation is a good technique to capture global connectivity.

- B₁ has been partitioned; B₂ is to be partitioned.
- u is propagated as a fixed vertex u_f to the subblock that is closer.
- u_f biases the partitioner to move v upward.
II. Placers based on simulated annealing

Suppose you have a placement that you want to improve. What can you do?

Possible algorithm:
- Pick a pair of cells and swap their locations if this leads to reduction in WL

What’s wrong with the previous greedy algorithm?
⇒ It can simply get stuck in a local optimal result
Simulated annealing allows us to avoid getting trapped in a local minima

Modified algorithm

- Generate a random move (say a swap of two cells)
 - calculate the chance in WL (ΔL) due to the move
 - if the move results in reduction ($\Delta L < 0$) then **accept**
 - else reject with probability $1-e^{-\Delta L/T}$

- T (temperature) controls the rejection probability

- Initially, T is high (thus avoiding getting trapped early in a local minima) then the temperature *cools down in a scheduled* manner; at the end, the rejection probability is 1

- With the right “slow-enough” cooling scheduling, simulated annealing is guaranteed to reach the global optimal
How do the cooling scheduling and corresponding cost functions look like?

[source: I. Markov]
Clustering reduces SA runtime

- Challenge: how to do the clustering without hurting the final wirelength/performance results?
III. Placers based on analytical techniques

A circuit net connecting three cells

\[z_1 = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}(|x_i - x_j| + |y_i - y_j|) \]

Hard to solve analytically, but can be approximated as

\[z_2 = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}((x_i - x_j)^2 + (y_i - y_j)^2) \]

⇒ Don’t forget that some cells are actually I/O pads that have fixed positions
The quadratic program is convex → its optimal solution can be readily found

$$z_2 = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}(x_i - x_j)^2 + (y_i - y_j)^2$$

- Quadratic programs are convex, thus the global optimal can be generally found “quickly” (e.g., using conjugant-gradient methods)

- However, the resultant placement are highly overlapping.
 - How to spread cells and remove the overlap?

results of solving a quadratic placement program

convex surface
Spreading cells by using top-down partitioning

Key issues:

- Where to bisect horizontally and vertically?
- What to do with cells that overlap with the bisection cut?
- What to do if cells are allocated disproportionately between the new blocks?
Timing-driven placement

- Timing-driven placement emphasizes (prioritizes) the minimization of the lengths of wires that belong to the critical paths of the circuit.

- For example, instead of solving the following purely wirelength-driven function

$$z = \sum_{e_i \in E} (\max_{v_j \in e_i} x_j - \min_{v_j \in e_i} x_j + \max_{v_j \in e_i} y_j - \min_{v_j \in e_i} y_j)$$

- Solve the following weighted function

$$z_T = \sum_{e_i \in E} w_i (\max_{v_j \in e_i} x_j - \min_{v_j \in e_i} x_j + \max_{v_j \in e_i} y_j - \min_{v_j \in e_i} y_j),$$

where w_i is a weight that reflects the criticality of the wire with respect to timing (the criticality is figured out from STA).
Lecture 07: Floorplanning and Placement

- Introduction to Placement and Floorplanning
- Global Placement
- Legalization and Detailed Placement
- Floorplanning
Placement legalization snaps cells on the layout rows

How to do this w/o harming WL/timing?

Let’s look at a simple case, where we have just one row placement

Overlap

Overlap

How to remove this overlap with minimum total movement (perturbation)?
Overlap Removal Using Dynamic Programming

Each chain represents the possible sites that a cell can be placed at.
The order of chains correspond to the order of cells from left to right in a row.
Overlap Removal Using Dynamic Programming

There are many paths from the start and end nodes → select the one that optimizes one of our objectives.
Min Total Distance Overlap Removal

1. Label a diagonal edge starting at some column j and chain c by the difference in distance between j and current location of cell c.

2. Label all horizontal edges by cost 0

3. Find the shortest path from start to end nodes using lexicographical sorting.
Detailed placement improves a given legal placement in an incremental fashion

Detailed placement (vs global placement) is of very-small scale combinatorial nature

Simple example of detailed placement:

• Slide a window over the layout area, and for each window location:
 • Find the cells that lie within the window
 • Try all possible layout permutation of the cells
 • Choose the permutation that leads to largest improvement in WL

⇒ Can only be feasible for small window size
Lecture 07: Floorplanning and Placement

• Introduction to Placement and Floorplanning
• Global Placement
• Legalization and Detailed Placement
• Floorplanning
Floorplanning objectives

Floorplanning problem: given design modules (with estimates of their areas), find an outline for the chip that minimizes wirelength and area and maximizes performance.
Using simulated annealing to solve the floorplanning problem

• Floorplanning is a small-scale optimization problem → ideal to solve using simulated annealing
• Simulated annealing is based on swapping moves.
• Key question:
 – How to capture the solution search space in representations (or configurations) that are amenable to swaps?
 – Many representations available. We will only study slicing trees
Slicing tree representation for floorplans

Two operators available:
• Slice vertically *
• Slice horizontally +

How can we use these two operators to build complex floorplan trees?

A Slicing tree can be written as a string

- Slicing tree = \((1+2)^*((3+4)+5)\)

- or in *post order traversal*: \(12+34+5^*\)
Floorplan-Slicing tree interactions

• For a given floorplan, is the slicing tree always unique?

Floorplan

Slicing tree

Another slicing tree

• For a given floorplan, is there always a slicing tree?

• This structure can’t be represented by a slicing tree
• Any slicing tree for the above modules must take larger area
There are three possible operators that allow to change the floorplan:

1. Swap two adjacent operands:
 - $1 \times 2 + 3 \times 4 + 5 :$
 - $1 \times 2 + 4 \times 3 + 5 :$
 - $1 \times 2 + 4 \times 3 + 5 :$

2. Swap two adjacent operands with & operator:
 - $1 \times 2 + 3 \times 4 + 5 :$
 - $1 \times 2 + 3 \times 4 + 5 :$
 - $1 \times 2 + 3 \times 4 + 5 :$

3. Complement a chain of operands:
 - $1 \times 2 + 3 \times 4 + 5 :$
 - $1 \times 2 + 3 \times 4 + 5 :$
 - $1 \times 2 + 3 \times 4 + 5 :$
How to using slicing trees in a SA optimization-based framework?

• Generate a random move

 (either: M1: swap two adjacent operands; M2: swap two adjacent operand and operator; or M3: complement a chain)

 – calculate the chance in the floorplan WL (ΔL) due to the move
 – if the move results in reduction ($\Delta L < 0$) then accept
 – else reject with probability $1 - e^{-\Delta L/T}$
Assignment Readings

• **Floorplanning:** VLSI Module Placement Based on Rectangle-Packing by the Sequence-Pair

• **Placement:** Algorithms for Large-Scale Flat Placement