
S. Reda EN164 Sp ‘11

EN164: Design of Computing Systems
Lecture 08: Processor / ISA 1

Professor Sherief Reda
http://scale.engin.brown.edu

Electrical Sciences and Computer Engineering
School of Engineering

Brown University
Spring 2011

1

ISA is the HW/SW interface

S. Reda EN164 Sp ‘11 2

HW

SW
ISA

ISA choice determines:

•  program size (& memory size)

•  complexity of hardware (CPI and f)

•  execution time for different applications and domains

•  power consumption

•  die area (cost)

Stored program concept (von Neumann model)

S. Reda EN164 Sp ‘11 3

  Instructions represented in
binary, just like data

  Instructions and data stored
in memory

  Programs can operate on
programs
  e.g., compilers, linkers, …

  Binary compatibility allows
compiled programs to work
on different computers
  Standardized ISAs

The BIG Picture

Steps in execution of a program

S. Reda EN164 Sp ‘11 4

  What is instruction format / size?
  how is it decoded?

  Where are the operands located? What
are their sizes?

  What are supported operations?
  How to determine the successor

instruction?

Fetch instruction @ PC

Decode instruction

Fetch Operands

Execute instruction

Store result

Update PC

Example of an instruction

S. Reda EN164 Sp ‘11 5

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

assembly language

machine language

ISA design choices

•  Number, size (fixed/variable) and format of
instructions

•  Operations supported (arithmetic, logical, string,
floating point, jump, etc)

•  Operands supported (bytes, words, signed,
unsigned, floating, etc)

•  Operand storage (accumulator, stack, registers,
memory)

•  Addressing modes

S. Reda EN164 Sp ‘11 6

Typical operations

S. Reda EN164 Sp ‘11 7

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate

[slide from M. Martin]

x86 ISA

S. Reda EN164 Sp ‘11 8

x86 instruction set

  Backward compatibility ⇒ instruction set doesn’t change
  But they do accumulate more instructions

Classification of ISAs

S. Reda EN164 Sp ‘11 9

[Figure from D. Brooks -- Harvard]

These ISAs give different characteristics in terms of size of programs,
number of instructions and CPI.

Examples of ISA

S. Reda EN164 Sp ‘11 10

Instruction sequence for C = A + B for the four ISAs

Stack Accumulator Register
(register-
memory)

Register
(load-store)

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R1, B
Store C, R1

Load R1, A
Load R2, B
Add R3, R1, R2
Store C, R3

Some architectures (e.g. x86) support hybrid ISAs for different
classes of instructions and/or for backward compatibility.

What makes a good ISA?
•  Efficiency of hardware implementation
•  Convenience of programming / compiling
•  Matches target applications (or generality)
•  Compatibility and portability

S. Reda EN164 Sp ‘11 11

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

ISA design is an art!

Four design principles for ISA

Popular ISAs

•  x86 from Intel (laptops, servers)

•  ARM (mobile devices)

•  MIPS (embedded devices)

•  Power and PowerPC from IBM (servers, old
Macs)

•  and many others still spoken and dead ISAs

S. Reda EN164 Sp ‘11 12

