EN164: Design of Computing Systems
Lecture 12: Processor / Single-Cycle Design 1

Professor Sherief Reda
http://scale.engin.brown.edu
Electrical Sciences and Computer Engineering
School of Engineering
Brown University
Spring 2011

[material from Patterson & Hennessy, 4th ed and Harris 1st ed]
Processor organization (microarchitecture)

- Multiple implementations for a single architecture:
 - Single-cycle
 - Each instruction executes in a single cycle
 - Multi-cycle
 - Each instruction is broken up into a series of shorter steps
 - Pipelined
 - Each instruction is broken up into a series of steps
 - Multiple instructions execute at once.
Introduction

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
- We will examine two MIPS implementations
 - A simplified version
 - A more realistic pipelined version
- Simple subset, shows most aspects
 - Memory reference: lw, sw
 - Arithmetic/logical: add, sub, and, or, slt
 - Control transfer: beq, j
Architectural state

- Determines everything about a processor:
 - PC
 - 32 registers
 - Memory
Single-Cycle MIPS Processor

- Datapath
- Control

Flowchart:

1. Fetch instruction @ PC
2. Decode instruction
3. Fetch Operands
4. Execute instruction
5. Store result
6. Update PC
Single-Cycle Datapath: \(\text{lw} \) fetch

- First consider executing \(\text{lw} \)
- **STEP 1**: Fetch instruction

![Instruction Memory Diagram]

![Register File Diagram]

![Data Memory Diagram]
Single-Cycle Datapath: \(lw \) register read

- **STEP 2:** Read source operands from register file
Single-Cycle Datapath: lw immediate

- **STEP 3:** Sign-extend the immediate
Single-Cycle Datapath: \(\texttt{lw} \) address

- **STEP 4:** Compute the memory address
Single-Cycle Datapath: \(\downarrow \) memory read

- **STEP 5:** Read data from memory and write it back to register file
Single-Cycle Datapath: lw PC increment

- **STEP 6:** Determine the address of the next instruction