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Scheduling example for dual-issue MIPS

Schedule this code for dual-issue MIPS

Loop: Tw , 0($s1)
add $t0, , $s2
sw  $t0, 0($s1)
addi $s1, $s1,-4

# $tO=array element
# add scalar in $s2

# store result

# decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: Tw  $t0, 0($sD) 1
2
add $t0, $t0, $s2 3
addi $s1, $s1,-4 sw $t0, 0($sl) 4
bne $s1, $zero, Loop 5

=« IPC =5/5=1 (c.f. peak dual-issue IPC = 2 and single-

iIssue IPC = 5/6 = 0.83 for single-issue pipeline)
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Limits to ILP: data dependencies

« Data dependencies determine:
— Order which results should be computed
— Possibility of hazards
— Degree of freedom in scheduling instructions
=> |limit to ILP

« Data/Name dependency hazards:
— Read After Write (RAW)
— Write After Read (WAR)
— Write After Write (WAW)
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Data dependency: RAW

Iw $s0, 0($t0)
add $s2, $s1, $s0

add $s2, $s1, $s0
sub $s4, $s2, $s3

sw $s2, 0($t0)

Iw $s1, 100($t1)

* Atrue data dependency because values are transmitted
between the instructions

 Dependency is clear when registers are involved — less
obvious when memory is involved. Alias analysis is required
for memory
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Name dependency (antidependence): WAR

lw $s0, 0($t0)

add $t0, $s1, $s2

add $s4, $s2, $s0

sub $s2, $s1, $s3

Iw $t2, 0($s2)

lw $s2, 4(5t0)

« Just a name dependency — no values being transmitted
* Dependency can be removed by renaming registers (either by
compiler or HW)
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Name dependency (output dependency):
WAW

Iw $s0, 0($t0)

add $s0, $s1, $s2

add $s2, $s1, $s0

sub $s2, $t2, $t3

« Just a name dependency — no values being transmitted
* Dependency can be removed by renaming registers (either by
compiler or HW)
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Impact of branches on data flow

« Data flow: actual flow of data values among instructions that
produce results and those that consume them

— branches make flow dynamic, determine which instruction is
supplier of data

« Example:
add $s2,9%s1,5s0
beqg $s2, St2, L
sub $s2,$s3,98s4
L ..
or $Ss6,5s2,5s5

« or depends on add or sub? Must preserve data flow on execution.

* Willing to execute instructions that should not have been executed,
thereby violating the control dependences, if can do so without
affecting correctness of the program
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Re-schedule example for dual-issue MIPS

Re-Schedule this code for dual-issue MIPS

Loop: Tw , 0($s1)
add $t0, , $s2
sw  $t0, 0($s1)
addi $s1, $s1,-4

# $tO=array element
# add scalar in $s2

# store result

# decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: Tw  $t0, 0($s1) 1
addi $s1, $s1,-4 2
add $t0, $t0, $s2 3
bne $s1, $zero, Loop |sw  $t0, 4($sl) 4

» IPC =5/4=1.25 (c.f. peak IPC = 2)
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Exposing ILP using loop unrolling

Replicate loop body to expose more
parallelism

= Reduces loop-control overhead

Use different registers per replication
= Called “register renaming”

= Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register

Aka “name dependence”
= Reuse of a register name
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Loop unrolling example

ALU/branch Load/store cycle
Loop: |addi $s1, $s1,-16 Tw  $t0, 0($sl) 1
Tw  $t1, 12($sD) 2
add $t0, $t0, $s2 Tw  $t2, 8($sl) 3
add $tl1, $tl, $s2 Tw  $t3, 4($s1) 4
add $t2, $t2, $s2 sw  $t0, 16($s1) 5
add $t3, $t3, $s2 sw  $tl, 12($s1) 6
sw  $t2, 8($sl) 7
bne $s1, $zero, Loop |sw  $t3, 4($sl) 8

PC =14/8 =1.75

= Closer to 2, but at cost of registers and code size
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Limits to loop unrolling

1. Decrease in amount of overhead amortized with each
extra unrolling

2. Growth in code size (might not fit in instruction memory
cache)

3. Register pressure: loop unrolling increase demands on
registers and they are few of them to begin with.
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Summary of VLIW architectures

 Advantages:

— Simplified HW for management of hazards and
scheduling (important for power and cost)

— Works well in data-intensive applications with little
control

 Disadvantages:

— Some hazards can’t be resolved during compile time
— Poor portability and backward compatibility

* Found a niche in embedded market (e.g., DSPs)
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