EN164: Design of Computing Systems
Lecture 21: Processor / ILP 2

Professor Sherief Reda
http://scale.engin.brown.edu
Electrical Sciences and Computer Engineering
School of Engineering
Brown University
Spring 2011

TS

2
CECEY

4= E
\EllE)

[material from Patterson & Hennessy, 4t ed]

S. Reda EN164 Sp ‘11

Scheduling example for dual-issue MIPS

Schedule this code for dual-issue MIPS

Loop: Tw , 0($s1)
add $t0, , $s2
sw $t0, 0($s1)
addi $s1, $s1,-4

$tO=array element
add scalar in $s2

store result

decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: Tw $t0, 0($sD) 1
2
add $t0, $t0, $s2 3
addi $s1, $s1,-4 sw $t0, 0($sl) 4
bne $s1, $zero, Loop 5

=« IPC =5/5=1 (c.f. peak dual-issue IPC = 2 and single-

iIssue IPC = 5/6 = 0.83 for single-issue pipeline)

S. Reda EN164 Sp ‘11

Limits to ILP: data dependencies

« Data dependencies determine:
— Order which results should be computed
— Possibility of hazards
— Degree of freedom in scheduling instructions
=> |limit to ILP

« Data/Name dependency hazards:
— Read After Write (RAW)
— Write After Read (WAR)
— Write After Write (WAW)

S. Reda EN164 Sp “11

Data dependency: RAW

Iw $s0, 0($t0)
add $s2, $s1, $s0

add $s2, $s1, $s0
sub $s4, $s2, $s3

sw $s2, 0($t0)

Iw $s1, 100($t1)

* Atrue data dependency because values are transmitted
between the instructions

 Dependency is clear when registers are involved — less
obvious when memory is involved. Alias analysis is required
for memory

S. Reda EN164 Sp “11

Name dependency (antidependence): WAR

lw $s0, 0($t0)

add $t0, $s1, $s2

add $s4, $s2, $s0

sub $s2, $s1, $s3

Iw $t2, 0($s2)

lw $s2, 4(5t0)

« Just a name dependency — no values being transmitted
* Dependency can be removed by renaming registers (either by
compiler or HW)

S. Reda EN164 Sp “11

Name dependency (output dependency):
WAW

Iw $s0, 0($t0)

add $s0, $s1, $s2

add $s2, $s1, $s0

sub $s2, $t2, $t3

« Just a name dependency — no values being transmitted
* Dependency can be removed by renaming registers (either by
compiler or HW)

S. Reda EN164 Sp “11

Impact of branches on data flow

« Data flow: actual flow of data values among instructions that
produce results and those that consume them

— branches make flow dynamic, determine which instruction is
supplier of data

« Example:
add $s2,9%s1,5s0
beqg $s2, St2, L
sub $s2,$s3,98s4
L ..
or $Ss6,5s2,5s5

« or depends on add or sub? Must preserve data flow on execution.

* Willing to execute instructions that should not have been executed,
thereby violating the control dependences, if can do so without
affecting correctness of the program

S. Reda EN164 Sp “11

Re-schedule example for dual-issue MIPS

Re-Schedule this code for dual-issue MIPS

Loop: Tw , 0($s1)
add $t0, , $s2
sw $t0, 0($s1)
addi $s1, $s1,-4

$tO=array element
add scalar in $s2

store result

decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: Tw $t0, 0($s1) 1
addi $s1, $s1,-4 2
add $t0, $t0, $s2 3
bne $s1, $zero, Loop |sw $t0, 4($sl) 4

» IPC =5/4=1.25 (c.f. peak IPC = 2)

S. Reda EN164 Sp ‘11

Exposing ILP using loop unrolling

Replicate loop body to expose more
parallelism

= Reduces loop-control overhead

Use different registers per replication
= Called “register renaming”

= Avoid loop-carried “anti-dependencies”
Store followed by a load of the same register

Aka “name dependence”
= Reuse of a register name

S. Reda EN164 Sp ‘11

Loop unrolling example

ALU/branch Load/store cycle
Loop: |addi $s1, $s1,-16 Tw $t0, 0($sl) 1
Tw $t1, 12($sD) 2
add $t0, $t0, $s2 Tw $t2, 8($sl) 3
add $tl1, $tl, $s2 Tw $t3, 4($s1) 4
add $t2, $t2, $s2 sw $t0, 16($s1) 5
add $t3, $t3, $s2 sw $tl, 12($s1) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4($sl) 8

PC =14/8 =1.75

= Closer to 2, but at cost of registers and code size

S. Reda EN164 Sp ‘11

10

Limits to loop unrolling

1. Decrease in amount of overhead amortized with each
extra unrolling

2. Growth in code size (might not fit in instruction memory
cache)

3. Register pressure: loop unrolling increase demands on
registers and they are few of them to begin with.

S. Reda EN164 Sp “11 11

Summary of VLIW architectures

 Advantages:

— Simplified HW for management of hazards and
scheduling (important for power and cost)

— Works well in data-intensive applications with little
control

 Disadvantages:

— Some hazards can’t be resolved during compile time
— Poor portability and backward compatibility

* Found a niche in embedded market (e.g., DSPs)

S. Reda EN164 Sp “11 12

