
S. Reda EN164 Sp ‘11

EN164: Design of Computing Systems
Lecture 21: Processor / ILP 2

Professor Sherief Reda
http://scale.engin.brown.edu

Electrical Sciences and Computer Engineering
School of Engineering

Brown University
Spring 2011

1
[material from Patterson & Hennessy, 4th ed]

Scheduling example for dual-issue MIPS

S. Reda EN164 Sp ‘11 2

  Schedule this code for dual-issue MIPS
Loop: lw $t0, 0($s1) # $t0=array element
 add $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

nop nop 2

add $t0, $t0, $s2 nop 3

addi $s1, $s1,–4 sw $t0, 0($s1) 4

bne $s1, $zero, Loop nop 5

  IPC = 5/5 = 1 (c.f. peak dual-issue IPC = 2 and single-
issue IPC = 5/6 = 0.83 for single-issue pipeline)

Limits to ILP: data dependencies

•  Data dependencies determine:
–  Order which results should be computed
–  Possibility of hazards
–  Degree of freedom in scheduling instructions

 => limit to ILP

•  Data/Name dependency hazards:

–  Read After Write (RAW)
–  Write After Read (WAR)
–  Write After Write (WAW)

S. Reda EN164 Sp ‘11 3

Data dependency: RAW

S. Reda EN164 Sp ‘11 4

lw $s0, 0($t0)

add $s2, $s1, $s0

add $s2, $s1, $s0
sub $s4, $s2, $s3

sw $s2, 0($t0)
….
lw $s1, 100($t1)

•  A true data dependency because values are transmitted
between the instructions

•  Dependency is clear when registers are involved – less
obvious when memory is involved. Alias analysis is required
for memory

Name dependency (antidependence): WAR

S. Reda EN164 Sp ‘11 5

lw $s0, 0($t0)

…

add $t0, $s1, $s2

add $s4, $s2, $s0
…..
sub $s2, $s1, $s3

lw $t2, 0($s2)
….
lw $s2, 4($t0)

•  Just a name dependency – no values being transmitted
•  Dependency can be removed by renaming registers (either by

compiler or HW)

Name dependency (output dependency):
WAW

S. Reda EN164 Sp ‘11 6

lw $s0, 0($t0)

….

add $s0, $s1, $s2

add $s2, $s1, $s0
….
sub $s2, $t2, $t3

•  Just a name dependency – no values being transmitted
•  Dependency can be removed by renaming registers (either by

compiler or HW)

Impact of branches on data flow

S. Reda EN164 Sp ‘11 7

•  Data flow: actual flow of data values among instructions that
produce results and those that consume them
–  branches make flow dynamic, determine which instruction is

supplier of data
•  Example:
 add $s2,$s1,$s0
beq $s2, $t2, L
sub $s2,$s3,$s4
L: …
or $s6,$s2,$s5

•  or depends on add or sub? Must preserve data flow on execution.
•  Willing to execute instructions that should not have been executed,

thereby violating the control dependences, if can do so without
affecting correctness of the program

Re-schedule example for dual-issue MIPS

S. Reda EN164 Sp ‘11 8

  Re-Schedule this code for dual-issue MIPS
Loop: lw $t0, 0($s1) # $t0=array element
 add $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

add $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

  IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Exposing ILP using loop unrolling

S. Reda EN164 Sp ‘11 9

  Replicate loop body to expose more
parallelism
  Reduces loop-control overhead

  Use different registers per replication
  Called “register renaming”
  Avoid loop-carried “anti-dependencies”

  Store followed by a load of the same register
  Aka “name dependence”

  Reuse of a register name

Loop unrolling example

S. Reda EN164 Sp ‘11 10

  IPC = 14/8 = 1.75
  Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

add $t0, $t0, $s2 lw $t2, 8($s1) 3

add $t1, $t1, $s2 lw $t3, 4($s1) 4

add $t2, $t2, $s2 sw $t0, 16($s1) 5

add $t3, $t3, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Limits to loop unrolling

1.  Decrease in amount of overhead amortized with each
extra unrolling

2.  Growth in code size (might not fit in instruction memory
cache)

3.  Register pressure: loop unrolling increase demands on
registers and they are few of them to begin with.

S. Reda EN164 Sp ‘11 11

Summary of VLIW architectures

•  Advantages:
–  Simplified HW for management of hazards and

scheduling (important for power and cost)
–  Works well in data-intensive applications with little

control
•  Disadvantages:

–  Some hazards can’t be resolved during compile time
–  Poor portability and backward compatibility

•  Found a niche in embedded market (e.g., DSPs)

S. Reda EN164 Sp ‘11 12

