EN164: Design of Computing Systems
Lecture 25: Memory Systems 1

Professor Sherief Reda
http://scale.engin.brown.edu
Electrical Sciences and Computer Engineering
School of Engineering
Brown University
Spring 2011

[material from Patterson & Hennessy, 4th ed and Harris 1st ed]
Introduction

- Computer performance depends on:
 - Processor performance
 - Memory system performance

Memory Interface
Introduction

- Up until now, assumed memory could be accessed in 1 clock cycle
Memory hierarchy

<table>
<thead>
<tr>
<th>Technology</th>
<th>cost / GB</th>
<th>Access time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>~ $10,000</td>
<td>~ 1 ns</td>
</tr>
<tr>
<td>DRAM</td>
<td>~ $100</td>
<td>~ 100 ns</td>
</tr>
<tr>
<td>magnetic hard disk</td>
<td>~ $1</td>
<td>~ 10,000,000 ns</td>
</tr>
</tbody>
</table>

Ideal memory
- Access time of SRAM
- Capacity and cost/GB of disk
Principle of locality

- Exploit locality to make memory accesses fast

 - **Temporal Locality:**
 - Locality in time (e.g., if looked at a Web page recently, likely to look at it again soon)
 - If data used recently, likely to use it again soon
 - **How to exploit:** keep recently accessed data in higher levels of memory hierarchy

 - **Spatial Locality:**
 - Locality in space (e.g., if read one page of book recently, likely to read nearby pages soon)
 - If data used recently, likely to use nearby data soon
 - **How to exploit:** when access data, bring nearby data into higher levels of memory hierarchy too
Memory hierarchy levels

- **Block (aka line):** unit of copying
 - May be multiple words

- **If accessed data is present in upper level**
 - **Hit:** access satisfied by upper level
 - Hit ratio: hits/accesses

- **If accessed data is absent**
 - **Miss:** block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - Miss ratio = 1 – hit ratio
 - Then accessed data supplied from upper level
Example

• A program has 2,000 load and store instructions
• 1,250 of these data values found in cache
• The rest are supplied by other levels of memory hierarchy
• What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625

Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate
Example

• Suppose processor has 2 levels of hierarchy: cache and main memory

• $t_{cache} = 1$ cycle, $t_{MM} = 100$ cycles

• What is the average memory access time (AMAT) of the program from Example 1?

\[\text{AMAT} = t_{cache} + MR_{cache}(t_{MM}) \]
\[= [1 + 0.375(100)] \text{ cycles} \]
\[= 38.5 \text{ cycles} \]