
S. Reda EN164 Sp ‘11

EN164: Design of Computing Systems
Lecture 32-33: Misc – I/O

Professor Sherief Reda
http://scale.engin.brown.edu

Electrical Sciences and Computer Engineering
School of Engineering

Brown University
Spring 2011

1
[material from Patterson & Hennessy, 4th ed, Harris 1st ed and Parhami]

Typical PC I/O organization

S. Reda EN164 Sp ‘11 2

Busses:
USB
Firewire
PCI express
Serial ATA

Bus: shared communication channel
Parallel set of wires for data and
synchronization of data transfer

I/O in embedded systems

S. Reda EN164 Sp ‘11 3

Analog
signal

conditioning

Digital
signal

conditioning

Signal
conversion

Signal
conversion

Analog sensors:
thermocouples,
pressure sensors, ...

Digital sensors:
detectors, counters,
on/off switches, ...

Digital actuators:
stepper motors,
relays, alarms, ...

Analog actuators:
valves, pumps,
speed regulators, ...

Digital
output

interface

D/A
output

interface

Digital
input

interface

A/D input
interface

CPU and
memory

Network
interface

Intelligent devices,
other computers,
archival storage, ...

Performance of I/O system

•  Latency (response time)
•  Throughput (bandwidth)
•  Latency and throughput is often a trade-off
•  Desktops & embedded systems:

–  Mainly interested in response time & diversity of
devices

•  Servers:
–  Interested in throughput (e.g., supercomputing) &

expandability of devices
–  Latency and throughput: Transactional workloads

S. Reda EN164 Sp ‘11 4

Busses and their appeal

S. Reda EN164 Sp ‘11 5

0 2

3 n–1

1

 n–2

0 2

3 n–1

1

 n–2

•  Point-to-point connections require quadratic number of wires between
n units require n(n – 1) channels, or n(n – 1)/2 bidirectional links

•  Bus connectivity requires only one input and one output port per unit,
linear number of wires

•  Busses need arbitration
•  Bus can be bottleneck; latency and throughput can degrade

I/O commands

S. Reda EN164 Sp ‘11 6

  I/O devices are managed by I/O controller hardware interface
  Control lines

  Read versus write
  Status registers

  Indicate what the device is doing and occurrence of errors
  Data registers

  Write: transfer data to a device
  Read: transfer data from a device

Control
Address

Data

Memory
bus

Compare

Device
address

Control
logic Device

controller

Device status

Device data

=

Example: LCD display in DE2 board

•  LCD has two 8-bit registers
(command and data)

•  Two control signals: RS and R/W

S. Reda EN164 Sp ‘11 7

LCD

8 bit data
R/W

RS

•  RS = 0 -> data bus has command
•  RS = 1 -> data bus has data value
•  R/W = 0 -> write (command or data)
•  R/W = 1 -> read (e.g., state)

LCD has two rows of characters (16 character each)

command reg

data reg

Example: LCD

S. Reda EN164 Sp ‘11 8

To show a character at a desired
location:
1.  write a command to move

cursor to location (top table)
2.  write the desired character

data value (right table)

Examples:
RS = 0 data = 0x80
RS = 1 data = 0x41

RS = 0 data = 0xC0
RS = 1 data = 0x54

Accessing I/O devices using memory
mapped I/O interface

S. Reda EN164 Sp ‘11 9

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

•  Device registers are addressed in same space as memory
•  Example: 0xFFFF0000 to 0xFFFFFFFF reserves the last 64KB in

memory for I/O device registers

Example: LCD

S. Reda EN164 Sp ‘11 10

addi $t0, $0, 0x080

sw $t0, 0xFFF0($0)
// wait for some time
addi $t0, $0, 0x141

sw $t0, 0xFFF0($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E1 = 1

CLK

00
01
10

CLK

Recall that the
16-bit immediate
is sign-extended
to 0xFFFFFFF4

LCD

•  WriteData bus is {RS, data} of the LCD controller
•  LCD address is at 0xFFF00000

Why “wait for some time” between I/O
memory writes?

•  I/O devices are usually (way) slower than the processor.
•  It will not be possible to issue commands or read/write

data on consecutive instructions because the I/O device
is processing the earlier command

•  Need to wait for sometime between accesses.

•  How much? Two techniques to figure out:

1.  Polling

2.  Interrupts

S. Reda EN164 Sp ‘11 11

1. Polling

S. Reda EN164 Sp ‘11 12

  Periodically check I/O status register
  If device ready, do operation
  If error, take action

  Common in small or low-performance real-
time embedded systems
  Predictable timing
  Low hardware cost

  In other systems, wastes CPU time

2. Interrupts

S. Reda EN164 Sp ‘11 13

  When a device is ready or error occurs
  Controller interrupts CPU

  Interrupt is like an exception
  But not synchronized to instruction execution
  Can invoke handler between instructions
  Cause information often identifies the

interrupting device
  Priority interrupts

  Devices needing more urgent attention get
higher priority

  Can interrupt handler for a lower priority
interrupt

Using DMAs for data transfer

S. Reda EN164 Sp ‘11 14

  Polling and interrupt-driven I/O
  CPU transfers data between memory and I/O data registers
  Time consuming for high-speed devices

  Direct memory access (DMA)
  OS provides starting address in memory
  I/O controller transfers to/from memory autonomously
  Controller interrupts on completion or error

Other control

Address
Data

System
bus

CPU
and

cache

Bus request

ReadWrite’
DataReady’

 Main
memory

Typical
I/O

device
Bus grant

DMA
controller

Length
Status

Dest’n
Source

DMA / cache interaction

S. Reda EN164 Sp ‘11 15

  If DMA writes to a memory block that is cached
  Cached copy becomes stale

  If write-back cache has dirty block, and DMA
reads memory block
  Reads stale data

  Need to ensure cache coherence
  Flush blocks from cache if they will be used for DMA
  Or use non-cacheable memory locations for I/O

Device drivers

•  Understand the HW interface of the I/O device
and knows how to access it

•  Provide the applications with routines (i.e.,
system calls) that abstract the HW aspects of the
I/O and simplifies programmer life

•  Part of the OS (no need to re-invent the wheel
for every application)

•  Example: a OS device driver routine could take a
string as input and displays it on LCD display

S. Reda EN164 Sp ‘11 16

I/O summary

•  Registers of I/O devices are mapped to the main
memory space in reserved segments

•  Processor sends commands and data to the I/O device
over the bus as if it is writing to a memory

•  I/O device controller accepts commands and data and
carry out required actions

•  Processor can either query I/O device controller to check
if it is done or I/O controller can interrupt the processor to
tell it that it is done

•  DMA controller relieves the processor data transfer

S. Reda EN164 Sp ‘11 17

