
S. Reda EN164 Sp ‘11

EN164: Design of Computing Systems
Lecture 32-33: Misc – I/O

Professor Sherief Reda
http://scale.engin.brown.edu

Electrical Sciences and Computer Engineering
School of Engineering

Brown University
Spring 2011

1
[material from Patterson & Hennessy, 4th ed, Harris 1st ed and Parhami]

Typical PC I/O organization

S. Reda EN164 Sp ‘11 2

Busses:
USB
Firewire
PCI express
Serial ATA

Bus: shared communication channel
Parallel set of wires for data and
synchronization of data transfer

I/O in embedded systems

S. Reda EN164 Sp ‘11 3

Analog
signal

conditioning

Digital
signal

conditioning

Signal
conversion

Signal
conversion

Analog sensors:
thermocouples,
pressure sensors, ...

Digital sensors:
detectors, counters,
on/off switches, ...

Digital actuators:
stepper motors,
relays, alarms, ...

Analog actuators:
valves, pumps,
speed regulators, ...

Digital
output

interface

D/A
output

interface

Digital
input

interface

A/D input
interface

CPU and
memory

Network
interface

Intelligent devices,
other computers,
archival storage, ...

Performance of I/O system

•  Latency (response time)
•  Throughput (bandwidth)
•  Latency and throughput is often a trade-off
•  Desktops & embedded systems:

–  Mainly interested in response time & diversity of
devices

•  Servers:
–  Interested in throughput (e.g., supercomputing) &

expandability of devices
–  Latency and throughput: Transactional workloads

S. Reda EN164 Sp ‘11 4

Busses and their appeal

S. Reda EN164 Sp ‘11 5

0 2

3 n–1

1

 n–2

0 2

3 n–1

1

 n–2

•  Point-to-point connections require quadratic number of wires between
n units require n(n – 1) channels, or n(n – 1)/2 bidirectional links

•  Bus connectivity requires only one input and one output port per unit,
linear number of wires

•  Busses need arbitration
•  Bus can be bottleneck; latency and throughput can degrade

I/O commands

S. Reda EN164 Sp ‘11 6

  I/O devices are managed by I/O controller hardware interface
  Control lines

  Read versus write
  Status registers

  Indicate what the device is doing and occurrence of errors
  Data registers

  Write: transfer data to a device
  Read: transfer data from a device

Control
Address

Data

Memory
bus

Compare

Device
address

Control
logic Device

controller

Device status

Device data

=

Example: LCD display in DE2 board

•  LCD has two 8-bit registers
(command and data)

•  Two control signals: RS and R/W

S. Reda EN164 Sp ‘11 7

LCD

8 bit data
R/W

RS

•  RS = 0 -> data bus has command
•  RS = 1 -> data bus has data value
•  R/W = 0 -> write (command or data)
•  R/W = 1 -> read (e.g., state)

LCD has two rows of characters (16 character each)

command reg

data reg

Example: LCD

S. Reda EN164 Sp ‘11 8

To show a character at a desired
location:
1.  write a command to move

cursor to location (top table)
2.  write the desired character

data value (right table)

Examples:
RS = 0 data = 0x80
RS = 1 data = 0x41

RS = 0 data = 0xC0
RS = 1 data = 0x54

Accessing I/O devices using memory
mapped I/O interface

S. Reda EN164 Sp ‘11 9

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

•  Device registers are addressed in same space as memory
•  Example: 0xFFFF0000 to 0xFFFFFFFF reserves the last 64KB in

memory for I/O device registers

Example: LCD

S. Reda EN164 Sp ‘11 10

addi $t0, $0, 0x080

sw $t0, 0xFFF0($0)
// wait for some time
addi $t0, $0, 0x141

sw $t0, 0xFFF0($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E1 = 1

CLK

00
01
10

CLK

Recall that the
16-bit immediate
is sign-extended
to 0xFFFFFFF4

LCD

•  WriteData bus is {RS, data} of the LCD controller
•  LCD address is at 0xFFF00000

Why “wait for some time” between I/O
memory writes?

•  I/O devices are usually (way) slower than the processor.
•  It will not be possible to issue commands or read/write

data on consecutive instructions because the I/O device
is processing the earlier command

•  Need to wait for sometime between accesses.

•  How much? Two techniques to figure out:

1.  Polling

2.  Interrupts

S. Reda EN164 Sp ‘11 11

1. Polling

S. Reda EN164 Sp ‘11 12

  Periodically check I/O status register
  If device ready, do operation
  If error, take action

  Common in small or low-performance real-
time embedded systems
  Predictable timing
  Low hardware cost

  In other systems, wastes CPU time

2. Interrupts

S. Reda EN164 Sp ‘11 13

  When a device is ready or error occurs
  Controller interrupts CPU

  Interrupt is like an exception
  But not synchronized to instruction execution
  Can invoke handler between instructions
  Cause information often identifies the

interrupting device
  Priority interrupts

  Devices needing more urgent attention get
higher priority

  Can interrupt handler for a lower priority
interrupt

Using DMAs for data transfer

S. Reda EN164 Sp ‘11 14

  Polling and interrupt-driven I/O
  CPU transfers data between memory and I/O data registers
  Time consuming for high-speed devices

  Direct memory access (DMA)
  OS provides starting address in memory
  I/O controller transfers to/from memory autonomously
  Controller interrupts on completion or error

Other control

Address
Data

System
bus

CPU
and

cache

Bus request

ReadWrite’
DataReady’

 Main
memory

Typical
I/O

device
Bus grant

DMA
controller

Length
Status

Dest’n
Source

DMA / cache interaction

S. Reda EN164 Sp ‘11 15

  If DMA writes to a memory block that is cached
  Cached copy becomes stale

  If write-back cache has dirty block, and DMA
reads memory block
  Reads stale data

  Need to ensure cache coherence
  Flush blocks from cache if they will be used for DMA
  Or use non-cacheable memory locations for I/O

Device drivers

•  Understand the HW interface of the I/O device
and knows how to access it

•  Provide the applications with routines (i.e.,
system calls) that abstract the HW aspects of the
I/O and simplifies programmer life

•  Part of the OS (no need to re-invent the wheel
for every application)

•  Example: a OS device driver routine could take a
string as input and displays it on LCD display

S. Reda EN164 Sp ‘11 16

I/O summary

•  Registers of I/O devices are mapped to the main
memory space in reserved segments

•  Processor sends commands and data to the I/O device
over the bus as if it is writing to a memory

•  I/O device controller accepts commands and data and
carry out required actions

•  Processor can either query I/O device controller to check
if it is done or I/O controller can interrupt the processor to
tell it that it is done

•  DMA controller relieves the processor data transfer

S. Reda EN164 Sp ‘11 17

