EN164: Design of Computing Systems Lecture 32-33: Misc – I/O

Professor Sherief Reda

http://scale.engin.brown.edu

Electrical Sciences and Computer Engineering
School of Engineering
Brown University
Spring 2011

Typical PC I/O organization

Bus: shared communication channel Parallel set of wires for data and synchronization of data transfer

I/O in embedded systems

Performance of I/O system

- Latency (response time)
- Throughput (bandwidth)
- Latency and throughput is often a trade-off
- Desktops & embedded systems:
 - Mainly interested in response time & diversity of devices
- Servers:
 - Interested in throughput (e.g., supercomputing) & expandability of devices
 - Latency and throughput: Transactional workloads

Busses and their appeal

- Point-to-point connections require quadratic number of wires between n units require n(n-1) channels, or n(n-1)/2 bidirectional links
- Bus connectivity requires only one input and one output port per unit, linear number of wires
- Busses need arbitration
- Bus can be bottleneck; latency and throughput can degrade

I/O commands

- I/O devices are managed by I/O controller hardware interface
- Control lines
 - Read versus write
- Status registers
 - Indicate what the device is doing and occurrence of errors
- Data registers
 - Write: transfer data to a device
 - Read: transfer data from a device

Example: LCD display in DE2 board

LCD has two rows of characters (16 character each)

- LCD has two 8-bit registers (command and data)
- Two control signals: RS and R/W
- RS = 0 -> data bus has command
- RS = 1 -> data bus has data value
- R/W = 0 -> write (command or data)
- R/W = 1 -> read (e.g., state)

Signal Name	FPGA Pin No.	Description
LCD_DATA[0]	PIN_J1	LCD Data[0]
LCD_DATA[1]	PIN_J2	LCD Data[1]
LCD_DATA[2]	PIN_H1	LCD Data[2]
LCD_DATA[3]	PIN_H2	LCD Data[3]
LCD_DATA[4]	PIN_J4	LCD Data[4]
LCD_DATA[5]	PIN_J3	LCD Data[5]
LCD_DATA[6]	PIN_H4	LCD Data[6]
LCD_DATA[7]	PIN_H3	LCD Data[7]
LCD_RW	PIN_K4	LCD Read/Write Select, 0 = Write, 1 = Read
LCD_EN	PIN_K3	LCD Enable
LCD_RS	PIN_K1	LCD Command/Data Select, 0 = Command, 1 = Data
LCD_ON	PIN_L4	LCD Power ON/OFF
LCD_BLON	PIN_K2	LCD Back Light ON/OFF

Example: LCD

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	08	09	0A	0В	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

To show a character at a desired location:

- 1. write a *command* to move cursor to location (top table)
- 2. write the desired character data value (right table)

Examples:

RS = 0 data = 0x80

RS = 1 data = 0x41

RS = 0 data = 0xC0

RS = 1 data = 0x54

Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LННН	HLLL	HLLH	HLHL	нінн	HHLL	ннгн	нннг	нннн
LLLL	CG RAM (1)						••	:::: ·				••••	-51	≡.	Ċ	
LLLH	(2)		ŀ	1			-==	-:::			:::	7	Ţ	<u></u>	.iii	
LLHL	(3)		::	2				ļ			<u> </u>	٠١,	ij	.:: [:]	ļ##	1331
LLHH	(4)		#			::::	<u></u> .	:≕.			!	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Ţ	₩	::::-	::-::
LHLL	(5)		:#:	4		T		ŧ			٠.		ļ	†7	ļI	:
LHLH	(6)		::: <u>:</u>	===		!	<u></u>	lI			::	:	<u>;</u> }		:::	ij
LHHL	(7)		8.	6	-	Ų.	₽"	١.,.١			:]]			ات: ا	E
LННН	(8)		።	··		<u></u>	•	II				#	;:: :		ا::ا	JT.
HLLL	(1)		ŧ.			: ::	ŀ'n	:::			.·¡`	٠		IJ	.,I'''	.
HLLH	(2)		[]	9	I	₩	i.	ا:::ا			-::	•†	ا.	11.	1	<u></u>
HLHL	(3)		:4:	::	T	2	. <u>.</u> .i	:::			::::		ı 'i	<u>.</u>	i	:: ::
нгнн	(4)		[::	K	I.	! ::	:			::	ij			:-:]=;
HHLL	(5)		::	•:	<u></u>	Ħ	1	I			1::	: !. <u></u>	<u>-</u>	<u>ار</u> ا	::	144
ннгн	(6)				M		m	:			.::.		٠٠٠.	:	1	
нннг	(7)		::	÷	N		ŀ";					t		•••	l ^{:=} l	
нннн	(8)			••••				-ij			٠:	اا	·::	:::	ı:::ı	

Accessing I/O devices using memory mapped I/O interface

- Device registers are addressed in same space as memory
- Example: 0xFFFF0000 to 0xFFFFFFFF reserves the last 64KB in memory for I/O device registers

Example: LCD

- WriteData bus is {RS, data} of the LCD controller
- LCD address is at 0xFFF00000

Why "wait for some time" between I/O memory writes?

- I/O devices are usually (way) slower than the processor.
- It will not be possible to issue commands or read/write data on consecutive instructions because the I/O device is processing the earlier command
- Need to wait for sometime between accesses.
- How much? Two techniques to figure out:
 - 1. Polling
 - 2. Interrupts

1. Polling

- Periodically check I/O status register
 - If device ready, do operation
 - If error, take action
- Common in small or low-performance realtime embedded systems
 - Predictable timing
 - Low hardware cost
- In other systems, wastes CPU time

2. Interrupts

- When a device is ready or error occurs
 - Controller interrupts CPU
- Interrupt is like an exception
 - But not synchronized to instruction execution
 - Can invoke handler between instructions
 - Cause information often identifies the interrupting device
- Priority interrupts
 - Devices needing more urgent attention get higher priority
 - Can interrupt handler for a lower priority interrupt

Using DMAs for data transfer

- Polling and interrupt-driven I/O
 - CPU transfers data between memory and I/O data registers
 - Time consuming for high-speed devices
- Direct memory access (DMA)
 - OS provides starting address in memory
 - I/O controller transfers to/from memory autonomously
 - Controller interrupts on completion or error

DMA / cache interaction

- If DMA writes to a memory block that is cached
 - Cached copy becomes stale
- If write-back cache has dirty block, and DMA reads memory block
 - Reads stale data
- Need to ensure cache coherence
 - Flush blocks from cache if they will be used for DMA
 - Or use non-cacheable memory locations for I/O

Device drivers

- Understand the HW interface of the I/O device and knows how to access it
- Provide the applications with routines (i.e., system calls) that abstract the HW aspects of the I/O and simplifies programmer life
- Part of the OS (no need to re-invent the wheel for every application)
- Example: a OS device driver routine could take a string as input and displays it on LCD display

I/O summary

- Registers of I/O devices are mapped to the main memory space in reserved segments
- Processor sends commands and data to the I/O device over the bus as if it is writing to a memory
- I/O device controller accepts commands and data and carry out required actions
- Processor can either query I/O device controller to check if it is done or I/O controller can interrupt the processor to tell it that it is done
- DMA controller relieves the processor data transfer