1. [15 points]

 I1: LW R1, 0 (R1)
 I2: AND R1, R1, R2
 I3: LW R2, 0 (R1)
 I4: LW R1, 0 (R3)

 a. [5 points] Find all data dependences in this instruction sequence.
 b. [5 points] Find all hazards in this instruction sequence for a 5-stage pipeline with and then without forwarding.
 c. [5 points] To reduce clock cycle time, we are considering a split of the MEM stage into two stages, where reading completes in the second MEM stage. Repeat parts (a) and (b) for this 6-stage pipeline.

2. [25 points] The pipelined MIPS processor is running the following program.

 add $t0, $t0, $t1
 sub $s1, $t2, $t3
 and $s2, $s0, $s1
 or $s3, $t4, $t5
 slt $s4, $s2, $s3

 a. [5 points] Which registers are being written, and which are being read in the sixth clock cycle?
 b. [5 points] Identify all Read After Write (RAW) hazards.
 c. [5 points] Modify the program to eliminate the hazards by inserting nop instructions in the program to eliminate any RAW hazards. How many cycles does it need to complete the modified program?
 d. [5 points] Reorder the instructions in the program, while maintaining correctness, to eliminate the RAW hazards. How many cycles does it need to complete the modified program?
 e. [5 points] Explain how a hazard detection unit can eliminate the RAW hazards in the program without the need for software modifications. Comment on the incurred costs of using a hazard detection unit with forwarding.