
Brown University
School of Engineering
EN1640 Design of Computing Systems
Professor Sherief Reda
LAB 04 (200 points)
Final report due on April 4th (Milestones on March 21st)

In this lab you are required to design and boot a single-cycle MIPS processor. To make
this lab manageable, it will be split into smaller components, where you implement a
increasing sets of MIPS instructions by certain due dates. You will need to submit only
one lab report on the due date of April 4th. However, you will need to demonstrate
progress to the TA by an intermediate date of March 21st. To verify that your processor
works correctly, you need to store its execution results in the RAM data memory and then
read the memory contents with the Quartus II tool after you run and are done with the
program. Make sure to go through the TimingQuest tutorial and guidelines in this
lab before working on it. There are 20 points allocated based on your actual
processor speed on the board.

(a) Implement processor with the following instructions:	 addi,	 sw,	 lw,	 add,	

sub,	 and,	 andi,	 or,	 ori,	 nor,	 sll,	 srl,	 mul	
	
Validate the design by booting the processor and running the following two
programs. Note that you can use the first program to test your processor after
implementing the first two instruction (addi, sw). You can then continue expanding
the instruction set and eventually test with the second program. Read the memory
contents after execution is finished. Contrast the memory contents with the results
you get from the MIPS simulator. Demonstrate the experiment to the TA by Friday
21th of March.

 Program 1:
	
addi	 $t0,	 $0,	 4	
addi	 $t1,	 $0,	 15	
addi	 $t2,	 $0,	 100	
addi	 $s1,	 $0,	 8	
sw	 	 $t0,	 0($s1)	
sw	 	 $t1,	 8($s1)	
sw	 	 $t2,	 -‐4($s1)	
halt 	

Program 2:
addi	 $t0,	 $0,	 8	
addi	 $t1,	 $0,	 15	
sw	 $t1,	 0($t0)	
add	 $t2,	 $t1,	 $t0	
sub	 $t3,	 $t1,	 $t0	

mul	 $s1,	 $t2,	 $t3	
addi	 $t0,	 $t0,	 4	
lw	 $s2,	 -‐4($t0)	 	
sub	 $s2,	 $s1,	 $s2	
sll	 $s2,	 $s2,	 2	
sw	 $s2,	 0($t0)	
halt	

(b) Implement processor with the following instructions:	 addi,	 sw,	 lw,	 add,	
sub,	 and,	 andi,	 or,	 ori,	 nor,	 sll,	 srl,	 mul,	 j,	 beq,	 bne,	 slt,	
jal,	 jr	 	
	
Validate the design by booting the processor and running the following code. Read
the memory contents after execution is finished. Contrast the memory contents with
the results you get from the MIPS simulator. Demonstrate the experiment to the TA
by Friday April 4th.

addi	 $a0,	 $0,	 6	
jal	 factorial	
sw	 $v0,	 0($0)	
halt	

factorial:	 	 addi	 $sp,	 $sp,	 -‐8	 	 	
sw	 	 	 $a0,	 4($sp)	 	 	 	
sw	 	 	 $ra,	 0($sp)	 	 	 	
addi	 $t0,	 $0,	 2	 	 	 	 	
slt	 	 $t0,	 $a0,	 $t0	 	
beq	 	 $t0,	 $0,	 else	 	
addi	 $v0,	 $0,	 1	 	 	 	 	
addi	 $sp,	 $sp,	 8	 	 	 	
jr	 	 	 $ra	 	 	 	 	 	 	 	 	 	 	 	

else:	 	 	 addi	 $a0,	 $a0,	 -‐1	 	
jal	 	 factorial	 	 	 	 	 	
lw	 	 	 $ra,	 0($sp)	 	 	 	
lw	 	 	 $a0,	 4($sp)	 	 	 	
addi	 $sp,	 $sp,	 8	 	 	 	
mul	 	 $v0,	 $a0,	 $v0	 	
jr	 	 	 $ra	 	 	 	 	 	 	 	 	 	

In addition to the factorial program, please validate your design using another meaningful
piece of code from the your Lab03 programs.

Use part (b) as the reference for the following requirements of your report:

Note: For your final working version of your design, please make sure to remove
debugging circuitry (e.g., for memory-content editor or signal tap) to reduce your
footprint and improve your timing. You might also like to explore the Quartus II tool
settings, which can adjust the strength of circuit optimization and trade-off design area
with timing.

1. Include the assembly and machine code of the factorial program and your

program of choice in the documentation. Print screenshots that shows the memory
contents after executing the factorial program and your program of choice.

2. Use the TimingQuest tool to analyze the timing in your design. Report the critical

path delay in your design and predicted Fmax. Use the tool to (1) locate the
critical path in your floorplan and print the annotated critical in the floorplan view,
and (2) estimate the delay breakdown among the different stages of execution
(e.g., fetch, decode, execution, memory and write back). Please read the tutorial
on TimingQuest analysis tool to understand the operation of this tool. A tutorial is
distributed in class and also available on the class web page.

3. Using the actual board, find the actual maximum frequency that your processor

can sustain without producing incorrect results. You need to keep on incrementing
the frequency of the design, and re-running your experiments. Once the
processors fails in booting, report the lowest frequency in which such failure
occurs. Contrast the actual maximum frequency to the estimated Fmax from the
TimingQuest tool. If there are differences between the predicted and actual
maximum frequency, explain potential reasons for these discrepancies.

4. Print and annotate the floorplan of your design. Report the resources being used

by your processor: LEs (combinational and dedicated registers), PLL, embedded
multipliers, memory blocks, and routing resources. Make sure to remove

5. If you have not followed the tutorial on using SignalTap, it is NOW time to learn
it to save you considerable amount of debug time.

Guidelines for Creation of Instruction and Data Memories:

Ideally the instruction memory should be built out of the ROM component. Unfortunately
the ROM component in the FPGA cannot be read combinationally; i.e., the output will
not update its value until the positive edge of the clock comes in. Because the ROM
address is supplied directly from the PC register, it will not be possible to update the PC
and fetch the instruction in the same cycle. To avoid this problem, I suggest creating the
ROM directly using an array of 32-bit registers in your code and initialize the registers
within your code using the initial statement.

For the data memory, you should initialize the RAM blocks using the M4K blocks using
the MegaWizard manager. Make sure the output port is not registered; however, there is
no way to avoid that the inputs are not registered (same problem as in ROM). To fix the
situation in this case, I suggest clocking the RAM with the inverse of the clock signal.
This will give the processor half a cycle to fetch and execute the instruction, and another
half a cycle to access the memory and loading its contents into register. It is not an ideal
situation. If you have other suggestions, feel free to suggest them.

Guidelines for Debugging:

You are likely to encounter many bugs in your design. To help in debugging your code
during runtime, you should learn how to use the Signal Tap tool. The Signal Tap tool
inserts additional circuitries in your design to allow you monitor the activities of various
wires during runtime through the Quartus II tool. The tool is very powerful for debugging.
I have distributed a tutorial in class and the tutorial is also available on the class web page.
The Signal Tap tool is very powerful and sufficient for debugging your code. In addition,
you might create your own manual signal taps by using the seven-segment displays and
LEDs as windows into different signals in your design. For example, you have 8 seven-
segment displays so that you can them to display any 32-bit word in hexadecimal format.
If you decide to implement your own taps then you should reduce the processor
frequency to around 1-2 Hz so that you can observe the changes on the displays. You can
derive a 1-2 Hz clock from the main 50 MHz clock in a similar manner to the blinking
LED exercise from Lab02.

Guidelines for reading back RAM memory:

To test the correctness of your code, you will need to read back the contents of the RAM
blocks after you are done with executing your code. The Quartus II tool enables you to
read back the contents of memory at any time after programming and during operation
using the In-System Memory Content Editor tool. You need to carry out the following
steps to enable such reading.

1. When you instantiate RAM, you will need to enable “Allow In-System Memory
Content Editor to capture and update content independently of the system clock”
as indicated in the next figure

2. Before you can use the In-System Memory Content Editor tool, one additional
setting has to be made. In the Quartus II software select Assignments > Settings to
open the window, and then open the item called Default Parameters under

Analysis and Synthesis Settings. As shown in the figure, type the parameter name
CYCLONEII_SAFE_WRITE and assign the value RESTRUCTURE. This
parameter allows the Quartus II synthesis tools to modify the single-port RAM as
needed to allow reading and writing of the memory by the In-System Memory
Content Editor tool. Click OK to exit from the Settings window.

3. After your programming your design, you need to launch the “In-System Memory

Content Editor” which can be access from the Tools menu. Note that the memory
content editor can be used to program your design. Select the memory in Instance
manager and click the read data from system memory button (one with a red box)
as shown in next figure. Now you can see the contents in the memory.

