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In this lab you are required to design and boot a single-cycle MIPS processor. To make 
this lab manageable, it will be split into smaller components, where you implement a 
increasing sets of MIPS instructions by certain due dates. You will need to submit only 
one lab report on the due date of April 4th. However, you will need to demonstrate 
progress to the TA by an intermediate date of March 21st. To verify that your processor 
works correctly, you need to store its execution results in the RAM data memory and then 
read the memory contents with the Quartus II tool after you run and are done with the 
program. Make sure to go through the TimingQuest tutorial and guidelines in this 
lab before working on it. There are 20 points allocated based on your actual 
processor speed on the board.  
 

 
(a) Implement processor with the following instructions:	  addi,	  sw,	  lw,	  add,	  

sub,	  and,	  andi,	  or,	  ori,	  nor,	  sll,	  srl,	  mul	  
	  
Validate the design by booting the processor and running the following two 
programs. Note that you can use the first program to test your processor after 
implementing the first two instruction (addi, sw). You can then continue expanding 
the instruction set and eventually test with the second program. Read the memory 
contents after execution is finished. Contrast the memory contents with the results 
you get from the MIPS simulator. Demonstrate the experiment to the TA by Friday 
21th of March. 
 

 Program 1: 
	  
addi	  $t0,	  $0,	  4	  
addi	  $t1,	  $0,	  15	  
addi	  $t2,	  $0,	  100	  
addi	  $s1,	  $0,	  8	  
sw	  	  $t0,	  0($s1)	  
sw	  	  $t1,	  8($s1)	  
sw	  	  $t2,	  -‐4($s1)	  
halt  	  
 
 
Program 2: 
addi	  $t0,	  $0,	  8	  
addi	  $t1,	  $0,	  15	  
sw	  $t1,	  0($t0)	  
add	  $t2,	  $t1,	  $t0	  
sub	  $t3,	  $t1,	  $t0	  



mul	  $s1,	  $t2,	  $t3	  
addi	  $t0,	  $t0,	  4	  
lw	  $s2,	  -‐4($t0)	  	  
sub	  $s2,	  $s1,	  $s2	  
sll	  $s2,	  $s2,	  2	  
sw	  $s2,	  0($t0)	  
halt	  
 

(b) Implement processor with the following instructions:	  addi,	  sw,	  lw,	  add,	  
sub,	  and,	  andi,	  or,	  ori,	  nor,	  sll,	  srl,	  mul,	  j,	  beq,	  bne,	  slt,	  
jal,	  jr	  	  
	  
Validate the design by booting the processor and running the following code. Read 
the memory contents after execution is finished. Contrast the memory contents with 
the results you get from the MIPS simulator. Demonstrate the experiment to the TA 
by Friday April 4th. 
 

 
addi	  $a0,	  $0,	  6	  
jal	  factorial	  
sw	  $v0,	  0($0)	  
halt	  

factorial:	  	   addi	  $sp,	  $sp,	  -‐8	  	  	  
sw	  	  	  $a0,	  4($sp)	  	  	  	  
sw	  	  	  $ra,	  0($sp)	  	  	  	  
addi	  $t0,	  $0,	  2	  	  	  	  	  
slt	  	  $t0,	  $a0,	  $t0	  	  
beq	  	  $t0,	  $0,	  else	  	  
addi	  $v0,	  $0,	  1	  	  	  	  	  
addi	  $sp,	  $sp,	  8	  	  	  	  
jr	  	  	  $ra	  	  	  	  	  	  	  	  	  	  	  	  

else:	  	  	   addi	  $a0,	  $a0,	  -‐1	  	  
jal	  	  factorial	  	  	  	  	  	  
lw	  	  	  $ra,	  0($sp)	  	  	  	  
lw	  	  	  $a0,	  4($sp)	  	  	  	  
addi	  $sp,	  $sp,	  8	  	  	  	  
mul	  	  $v0,	  $a0,	  $v0	  	  
jr	  	  	  $ra	  	  	  	  	  	  	  	  	  	  

 
 
In addition to the factorial program, please validate your design using another meaningful 
piece of code from the your Lab03 programs. 
 
Use part (b) as the reference for the following requirements of your report: 
 
Note:  For your final working version of your design, please make sure to remove 
debugging circuitry (e.g., for memory-content editor or signal tap) to reduce your 
footprint and improve your timing. You might also like to explore the Quartus II tool 
settings, which can adjust the strength of circuit optimization and trade-off design area 
with timing.  



 
1. Include the assembly and machine code of the factorial program and your 

program of choice in the documentation. Print screenshots that shows the memory 
contents after executing the factorial program and your program of choice. 

 
2. Use the TimingQuest tool to analyze the timing in your design. Report the critical 

path delay in your design and predicted Fmax. Use the tool to (1) locate the 
critical path in your floorplan and print the annotated critical in the floorplan view, 
and (2) estimate the delay breakdown among the different stages of execution 
(e.g., fetch, decode, execution, memory and write back). Please read the tutorial 
on TimingQuest analysis tool to understand the operation of this tool. A tutorial is 
distributed in class and also available on the class web page. 

 
3. Using the actual board, find the actual maximum frequency that your processor 

can sustain without producing incorrect results. You need to keep on incrementing 
the frequency of the design, and re-running your experiments. Once the 
processors fails in booting, report the lowest frequency in which such failure 
occurs. Contrast the actual maximum frequency to the estimated Fmax from the 
TimingQuest tool. If there are differences between the predicted and actual 
maximum frequency, explain potential reasons for these discrepancies. 

 
4. Print and annotate the floorplan of your design. Report the resources being used 

by your processor: LEs (combinational and dedicated registers), PLL, embedded 
multipliers, memory blocks, and routing resources. Make sure to remove  
 

5. If you have not followed the tutorial on using SignalTap, it is NOW time to learn 
it to save you considerable amount of debug time. 

 
 
Guidelines for Creation of Instruction and Data Memories:  
 
Ideally the instruction memory should be built out of the ROM component. Unfortunately 
the ROM component in the FPGA cannot be read combinationally; i.e., the output will 
not update its value until the positive edge of the clock comes in. Because the ROM 
address is supplied directly from the PC register, it will not be possible to update the PC 
and fetch the instruction in the same cycle. To avoid this problem, I suggest creating the 
ROM directly using an array of 32-bit registers in your code and initialize the registers 
within your code using the initial statement. 
 
For the data memory, you should initialize the RAM blocks using the M4K blocks using 
the MegaWizard manager. Make sure the output port is not registered; however, there is 
no way to avoid that the inputs are not registered (same problem as in ROM). To fix the 
situation in this case, I suggest clocking the RAM with the inverse of the clock signal. 
This will give the processor half a cycle to fetch and execute the instruction, and another 
half a cycle to access the memory and loading its contents into register. It is not an ideal 
situation. If you have other suggestions, feel free to suggest them. 



Guidelines for Debugging: 
 
You are likely to encounter many bugs in your design. To help in debugging your code 
during runtime, you should learn how to use the Signal Tap tool. The Signal Tap tool 
inserts additional circuitries in your design to allow you monitor the activities of various 
wires during runtime through the Quartus II tool. The tool is very powerful for debugging. 
I have distributed a tutorial in class and the tutorial is also available on the class web page. 
The Signal Tap tool is very powerful and sufficient for debugging your code. In addition, 
you might create your own manual signal taps by using the seven-segment displays and 
LEDs as windows into different signals in your design. For example, you have 8 seven-
segment displays so that you can them to display any 32-bit word in hexadecimal format. 
If you decide to implement your own taps then you should reduce the processor 
frequency to around 1-2 Hz so that you can observe the changes on the displays. You can 
derive a 1-2 Hz clock from the main 50 MHz clock in a similar manner to the blinking 
LED exercise from Lab02. 
 
Guidelines for reading back RAM memory: 
 
To test the correctness of your code, you will need to read back the contents of the RAM 
blocks after you are done with executing your code. The Quartus II tool enables you to 
read back the contents of memory at any time after programming and during operation 
using the In-System Memory Content Editor tool. You need to carry out the following 
steps to enable such reading. 
 

1. When you instantiate RAM, you will need to enable “Allow In-System Memory 
Content Editor to capture and update content independently of the system clock” 
as indicated in the next figure 

 



2. Before you can use the In-System Memory Content Editor tool, one additional 
setting has to be made. In the Quartus II software select Assignments > Settings to 
open the window, and then open the item called Default Parameters under 

Analysis and Synthesis Settings. As shown in the figure, type the parameter name 
CYCLONEII_SAFE_WRITE and assign the value RESTRUCTURE. This 
parameter allows the Quartus II synthesis tools to modify the single-port RAM as 
needed to allow reading and writing of the memory by the In-System Memory 
Content Editor tool. Click OK to exit from the Settings window. 

 
3. After your programming your design, you need to launch the “In-System Memory 

Content Editor” which can be access from the Tools menu. Note that the memory 
content editor can be used to program your design. Select the memory in Instance 
manager and click the read data from system memory button (one with a red box) 
as shown in next figure. Now you can see the contents in the memory.  


