
Brown University
School of Engineering
ENGN1640 Design of Computing Systems
Professor Sherief Reda
LAB 03 (100 points).
Due in lab to TA by Friday, March 4.

(1) [50 points] Your objective is to design a programmable stack-based calculator, which

is also known as a postfix calculator, that can do 8-bit integer arithmetic. You have
to include five instructions:

Instruction Meaning
push value push the immediate value into the top of the stack.
add pops the two top elements in the stack and push the result of the addition

to the stack.
sub pops the two top elements in the stack and push the result of the

subtraction to the stack.
mult pops the two top elements in the stack and push the result of the

multiplication to the stack.
halt Stops execution and displays the top of the stack on the 7 segment

display in decimal.

Here are two examples that show the operation of the calculator
Example A: 8-5*3 Example B: 5 + ((1 + 2) * 4) – 3
push 8
push 5
push 3
mult
sub
halt

push 5
push 1
push 2
add
push 4
mult
add
push 3
sub
halt

A. Design an instruction set format of this machine.
B. Translate the two example assembly programs into machine code using the format

you created in part (A)
C. Write the Verilog code for this machine.
D. Implement the stack machine on the DE2 board. Assume the following:

• The machine has a stack of exactly 10 8-bit entries (users will never create
programs that require more than 10 items in the stack).

• One LED will turn on if there is an arithmetic overflow.
• The machine code for programs is stored in a ROM.

i. For the DE2 board, You will need to instantiate a ROM from the
megafunction wizard and initialize its content from a .mif file.

The .mif file can be created and edited by choosing File  New 
Memory Files  Memory Initialization File. Interface the ROM to
your CPU module using appropriate address, data and control busses.

ii. For your Verilog testbench, the ROM will be part of your
testbench and your testbench will supply the instructions over the
busses to the CPU and will receive the output directed for the 7-
segment displays.

• When the machine boots, it starts executing instructions from address 0 until
a halt is encountered.

E. Please report:
• your Verilog testbench and simulation results using $display or $monitor

outputs giving the results from the execution of the two examples;
• the total logic and routing resources using by your circuit;
• RTL circuit view;
• the actual critical path of your circuit and the propagation delay of your

circuit critical path.
F. 10 points of this question will be determined upon your final design size in

terms of LEs. You should not use any RAM/ROM elements to substitute for
logic functions implemented in LEs. 10 ≤ 160, 9 ≤ 170, 8 ≤ 190, 7 ≤ 200, 6 ≤ 220,
5 ≤ 250, 4 ≤ 400.

(2) [10 points] The NOR instruction is not part of the ARM instruction set, because the

same functionality can be implemented using existing instructions. Write (and validate
using the ARM simulation) a short assembly code snippet that has the following
functionality: R0=R1 NOR R2. Test your code by NORing 0x7F with 0x10 and
NORing 0x7F12 with 0x1017. Use as few instructions as possible.

(3) [15 points] Write an ARM program to reverse (not inverse!) the bits in a register (e.g.,
1011111101). Assume the register of interest is R0. Initialize R0 to test your code.
Use the ARM simulator to test your code.

(4) [25 points] Write ARM code that tests whether a given input string is a palindrome.

The procedure should set R11 to 1 if the string is palindrome; otherwise, 0. (Recall
that a palindrome is a word that is the same forward and backward. For example, the
words “wow” and “racecar” are palindromes). Write an assembly program that test
the procedure by calling it three times using the strings “wow”, “racecar”, “x” and
“sunshine” as inputs. Use the ARM simulator to test your code. To store the string in
your program, include the following line at the end of the program
test_string: .asciz "wow" which creates zero-terminated string in the
memory and then you can load the starting address of the string in a register by using
LDR R1, =test_string. Recall that to load the individual character you can use
LDRB. Do not assume that the default values of registers are zero; make sure to
initialize to zero if that is the intent. Use the fewest number of static instructions. 5
points will be allocated for the usage of minimum number of instructions. 5 <=15
instructions, 4 <= 17 instructions, 3 <= 19 instructions, 2 >= 20 instructions.

