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Abstract—Latency-critical workloads in datacenters have tight response time requirements to meet service-level agreements (SLAs).
Sleep states (c-states) enable servers to reduce their power consumption during idle times; however entering and exiting c-states is not
instantaneous, leading to increased transaction latency. In this paper we propose a c-state arbitration technique, CARB, that minimizes
response time, while simultaneously realizing the power savings that could be achieved from enabling c-states. CARB adapts to
incoming request rates and processing times and activates the smallest number of cores for processing the current load. CARB
reshapes the distribution of c-states and minimizes the latency cost of sleep by avoiding going into deep sleeps too often. We quantify
the improvements from CARB with memcached running on an 8-core Haswell-based server.

Index Terms—Latency-critical workloads, energy-efficient, c-state, feedback controller, workload consolidation
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1 INTRODUCTION

Minimizing tail request latency is a dominant optimization
target in datacenters because whole groups of requests are
often held behind by the slowest one. In an application
service tree, the negative effects of a single slow request
can easily get amplified severalfold when moving closer to
the root. For example, Dean and Barroso show a latency
degradation of 10×, when measured at the root of the tree,
as opposed to at an individual node [1]. Such performance
irregularities lead to violations of service-level agreements
(SLAs) and low levels of utilization in datacenters [2].

Processor idleness, especially at mid- and low-utilization
points, interferes with request tail latencies [3], [4]. The
latency cost of sleep is the result of a request arriving while
a processor core is in a sleep state (c-state), and having to
pay additional latency for the transition to active mode (C0)
before being processed. Deeper sleep states lead to larger
latency transitions, which further exacerbates the problem
at low server utilizations. Given that servers spend most of
their time at low utilizations [2], c-states lead to a dilemma
as enabling them saves power but increases response time.

In this paper, we observe that there is an optimal number
of active cores that minimizes tail latencies, and that any
larger number of active cores beyond the optimal simul-
taneously worsens performance and power. This optimal
number is a function of the request rate and the application.
Based on this observation, we propose a c-state arbitration
technique, CARB, which unobtrusively monitors request
latencies for the target workload and optimally adjusts
the number of active cores to minimize response time
and power. CARB reshapes the distribution of c-states and
minimizes the latency cost of sleep by avoiding going into
deep sleeps too often. We demonstrate CARB on an 8-core
Haswell-based server using memcached [5]. Compared to a
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traditional scheduler that spreads the load across as many
cores as possible, CARB effectively reduces tail latencies by
up to 51% and reduces system power by 6%.

The rest of this paper is organized as follows. We quan-
tify the effects of idleness on request latencies for latency-
sensitive datacenter applications in Section 2. We then de-
scribe how CARB consolidates request processing on as few
cores as necessary in Section 3. Finally, we demonstrate its
effectiveness on an Intel Haswell-based server in Section 4.

2 MOTIVATION & OVERVIEW

Power savings states, i.e., c-states, enable processors to save
power consumption during idle periods where no instruc-
tions are available to execute. New processors offer deeper
c-states for more power savings during idle periods. For
example, Intel’s Haswell architecture offers the following 5
c-states (e.g., C1, C1E, C3, C6 and C8) [6]. While c-states
enable processors to achieve power savings, entry to and
exit from a c-state by a core incurs a latency overhead
during which the core cannot be utilized. For example, it
is estimated that the C3 and C6 states require, respectively,
80 µs and 104 µs [3]. These entry-exit latencies can have
significant performance effects on workloads whose request
processing latencies are of similar magnitude.

We illustrate the negative performance effects of deep
sleep on our 8-core Haswell-based Xeon server in Figure
1. We report the 95th percentile response time and aver-
age power consumption for the memcached application as
a function of the number of requests per second (RPS).
The plots show that enabling c-states introduces a latency
overhead that is a function of RPS, but it reduces power
consumption. For instance, at low RPS values (e.g., 10K),
the increase in the 95th response time is up to 2×, but the
power savings are about 20%. As RPS increases, there are
naturally fewer opportunities for cores to go idle, and as a
result the overhead of c-states diminishes. Figure 2 provides
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Fig. 1. Impact of enabling versus disabling c-states on 95-th percentile
latency and power consumption for various RPS.
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Fig. 2. Fraction of time spent by the entire processor at various c-states.

the fraction of time spent by the entire processor (averaged
over 8 cores) in various c-states. The plot shows that at low
RPS values, idleness periods are long enough to induce deep
sleep states with larger delay penalties.

One way to mitigate this increase in latency is to use
fewer cores. We observe the relationship between the num-
ber of active cores and latencies for memcached in Figure
3, where we plot the measured 95th response time as a
function of the number of active cores at RPS=25K, 50K, and
75K. The plot for each RPS value has a clear minimum where
performance is optimal. To the left of the minimum, the
number of active cores is not sufficient to handle the load,
and latency dramatically increases due to queueing. More
interestingly, to the right of the minimum, performance is
also worse due to the c-state latency effect identified earlier.
At the optimal point, the entry-exit overheads are minimal
because the busy cores have the minimum amount of idle
time that allows them to handle the incoming load.

Based on these observations, we propose a c-state arbiter
which arbitrates the number of active cores in search for this
optimum. Such behavior is in contrast with traditional OS
fairness policies, which aim to spread load across all cores,
and closer to the goals of packing schedulers [7]. Packing
cores, or limiting an application’s core allocation, has been
well-studied, most frequently in a multi-application sce-
nario with the goal of workload isolation [8], i.e. not falling
off the “performance cliff” shown to the left on Figure 3. On
the contrary, this paper demonstrates that too many cores
can also be detrimental to performance even in the single-
application case. While previously such effects have been
attributed to cache sharing [9] or I/O interrupt schedul-
ing [4], we add deep sleep as a reason to prefer packing.
C-state management is highly relevant to applications that
are latency-sensitive and that lead to frequent sleeps, where
the sleep overhead is comparable to the request latency [3].
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Fig. 3. 95th percentile response time as a function of number of arbi-
trated active cores for RPS=25K, 50K and 75K.

3 CARB DESIGN

CARB is a feedback-based controller that arbitrates the
minimum number of sufficient cores for a given request rate.
CARB collects the real time request rate r(k) and response
time y(k) (time is discrete and denoted by k) as control
inputs and arbitrates the number of active cores.

At each control epoch, CARB adjusts the number of ac-
tive cores c(k) ∈ [cmin, cmax] towards the optimal. CARB has
three working states: 1) idle state S0, where it measures the
request rate r(k) and the response time y(k) and determines
the next state s(k+1); 2) scaling up state S1, where it increases
the number of active cores by a step size ∆(k) until the
response time cannot be further improved, then switches
back to S0; and 3) scaling down state S2, where it decreases
the number of active cores by ∆(k) until the response time
cannot be further improved, then switches back to S0. In
more detail, when the controller resides in S0, the state
transitions and control logic are given in Algorithm 1.

Algorithm 1 Control logic at S0
1: if r(k) > r(k − 1) + δr then
2: c(k)← c(k − 1) + ∆(k); s(k + 1)← S1
3: else if r(k) < r(k − 1)− δr then
4: c(k)← c(k − 1)−∆(k); s(k + 1)← S2
5: else if y(k) > y(k − 1) + δy then
6: c(k)← c(k − 1) + ∆(k); s(k + 1)← S1
7: else
8: c(k)← c(k − 1) ; s(k + 1)← S0

δr and δy are sensitivity thresholds to filter out the noise in
request rate and response time so that unnecessary oscilla-
tion can be avoided, and are determined empirically.

At states S1 and S2, CARB scales the number of active
cores (up for S1 and down for S2) towards the optimal as
given in Algorithms 2 and 3.

Algorithm 2 Control logic at S1
1: if y(k) < y(k − 1) + δy then
2: c(k)← c(k − 1) + ∆(k); s(k + 1)← S1
3: else
4: c(k)← c(k − 1)−∆(k); s(k + 1)← S0

Algorithm 3 Control logic at S2
1: if y(k) < y(k − 1) + δy then
2: c(k)← c(k − 1)−∆(k); s(k + 1)← S2
3: else
4: c(k)← c(k − 1) + ∆(k); s(k + 1)← S0



1556-6056 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2016.2537802, IEEE Computer
Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTER 3

At initialization, we set k = 0, c(0) = cmax, and
s(0) = S2 while measuring r(0) and y(0). In all steps, CARB
checks that ∆(k) leads to a c(k) ∈ [cmin, cmax] before each
change inside the loop. It is crucial to identify the most ef-
fective step size ∆(k), particularly when CARB is operating
on the left side to the optimal on the curve in Figure 3. To
ensure the SLA will not be violated, CARB should move
out of the left side within the minimum number of steps.
A constant ∆(k) can be set based on user preferences and
might be chosen differently for scaling up and scaling down.
To address the situation of potential bursts in request load,
which requires scaling up capacity rapidly, CARB sets the
number of cores to the maximum when the request rate
r(k) increases beyond a threshold rth, then attempts to scale
down cores afterwards.

We also examined other controllers based on
proportional-integral-derivative (PID) controllers and
gradient descent methods. PID controllers require analytical
models for the output to identify their optimal parameters,
which is quite challenging in our system due to the
variations in the response time from queueing effects.
On the other hand, CARB does not require an analytical
objective function. Similarly, optimal control methods
(e.g., gradient descent or Newton’s method) require a
differentiable objective function. We have found that noise
arising from measurements and queueing effects lead
to erroneous gradient calculations, which make these
methods relatively unstable. As our problem is a local
one-dimensional unconstrained optimization problem, our
bang-bang based CARB controller gives us good results.

4 EVALUATION

4.1 Evaluation Methodology
Server: We evaluate CARB on an Intel Haswell-based server
using a Xeon E5-2630 V3 8-core processor with 32GB of
DDR4 memory and a 10 Gbe network controller. The server
runs Ubuntu 14.04. We measure power consumption by
sensing the external current at the 120 V AC socket with
a sampling rate of 10 Hz. Hardware control of frequency
(Intel TurboBoost) is enabled on the processor.
Workloads: To evaluate the effectiveness of CARB, we
choose memcached [5], a memory object caching workload.
The data caching benchmark from CloudSuite [10] is
used to generate request load and to collect end-to-end
delay statistics.
Request load trace: Since real load traces of a data caching
cluster are rarely available for access, we use a synthetic
trace. This way, we can control the range and the frequency
of the fluctuation of the requests. A time series trace can be
generated using: r(k + 1) =

∑m−1
i=0 ω(i)r(k − i) + Φα(k),

where r(k) is the request load at time k, ω is a vector
defining the weights on the last m samples; Φ is a parameter
that describes how much the request load will fluctuate
between two consecutive elements in the series; and α(k)
is a random number drawn from a normal distribution.
Implementation: CARB is implemented using Python. The
number of active cores can be changed either by setting
core affinity (cpuset), or by taking cores away from the
OS. In either case, inactive cores go the deepest sleep state
and the application needs no changes. CARB only needs
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Fig. 4. The normalized 95th latency with the optimal number of cores.
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Fig. 5. Fraction of time spent by each core in various c-states under
various arbitration for RPS=10K. Subfigure (a) gives the default case
when all cores are active; Subfigure (b) gives the case when 2 active
cores are arbitrated.

the ability to monitor request rate and response time of
the application. The request rate can be measured from the
network socket and the response time can be observed from
the server by timing the request service time. Both of them
can be measured without modifying the target application.
Although in our case data caching has the interface to
monitor the request rate and response time.

4.2 Experimental results
Static results. We first demonstrate the optimal number of
cores and the response time difference between using all
cores and the optimal number of cores. We vary the request
rate from 10 K to 120 K with a step of 10 K and measure
the 95th percentile of the response time when all 8 cores are
enabled and when the optimal number of cores are enabled
using CARB. Results normalized to the response time of 8
cores, together with the corresponding number of optimal
cores, are given in Figure 4. By consolidating the requests
onto a subset of cores, response time can be reduced by
up to 51%. In order to better demonstrate how CARB
works, Figure 5 plots the change in c-states distribution
when the request rate is 10 K, using 8 cores and optimal
number of cores (two in this case). The optimal number
of active cores is usually less than eight when the request
rate is less than 100 K. We observe that the optimal number
of cores has to be larger than one, i.e., cmin = 2. One
explanation for this is that, with only one core available, all
system and background processes are scheduled together
and interfere with the memcached process. Thus, in our
dynamic experiments, we set the lower bound of scaling
down cores as two cores.
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Dynamic results. In this experiment we evaluate CARB
with 90-minute synthetic request traces. We set the step
size ∆(k) to 1 for both scaling up and scaling down states.
The threshold parameter, rth, is chosen as 20 KRPS. The
sensitivity parameter δr is set as 5 KRPS and δy is chosen
as 10% of the average response time. Figure 6 shows re-
sults with a slow varying trace, where we plot the request
rate, the 95th percentile of the response time, power, and
the number of active cores over time for three cases: (1)
default c-state management, (2) disabling c-states, and (3)
CARB. The response time using CARB is almost half that
of the default c-state management when the request load
is very low and overall 26% lower, while consuming 6.1%
less power. Compared to disabling c-states, CARB reduces
power by 23% while offering similar response times. The
results are summarized in Figure 8. Thus, CARB delivers
response times close to the case with c-states disabled and
consumes less power than the default c-state governor.

We repeat the same test with a fast varying request rate
trace. The corresponding results are given in Figure 7 and
Figure 8. The results show that the response time of CARB
closely follows the case with disabled c-states while request
load is low. After the load spikes at 28 mins and 57 mins, to
be conservative, CARB scales up to the maximum number
of cores and then searches down for the optimal. Overall,
CARB reduces response time by 25% over the c-state default
with 5% power savings.

5 CONCLUSIONS

For latency-critical workloads with sub-millisecond re-
sponse times, c-state transitions constitute a good portion of
overall latency, especially when the request load is relatively
low. In this case, consolidating the load on a subset of cores
improves both latency and energy efficiency. We devised
a controller, CARB, which arbitrates the core allocation of
memcached, and manages to find the minimum number
of cores to optimize latency and power. In addition to
memcached, we believe that CARB is particularly attractive
for latency-sensitive workloads, where the overhead of sleep
state transitions is comparable to the response time.
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Fig. 7. Dynamic results of memcached with fast varying request trace.
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