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Abstract—Customizing server hardware to adapt to its work-
load has the potential to improve both runtime and energy
efficiency. In a cluster that caters to diverse workloads, employing
servers with customized hardware components leads to hetero-
geneity, which is not scalable. In this paper, we seek to create soft
heterogeneity from existing servers with homogenous hardware
components through customizing the firmware configuration. We
demonstrate that firmware configurations have a large impact on
runtime, power, and energy efficiency of workloads. Since finding
the firmware configuration that minimizes runtime and/or energy
efficiency grows exponentially as a function of the number of
firmware settings, we propose a methodology called FXplore that
helps complete the exploration with a quadratic time complexity.
Furthermore, FXplore enables system administrators to manage
the degree of the heterogeneity by deriving firmware configura-
tions for sub-clusters that can cater to multiple workloads with
similar characteristics. Thus, during online operation, incoming
workloads to the cluster can be mapped to appropriate sub-
clusters with pre-configured firmware settings. FXplore also finds
the best firmware settings in case of co-runners on the same
server. We validate our methodology on a fully-instrumented
cluster under a large range of parallel workloads that are
representative of both high-performance compute clusters and
datacenters. Compared to enabling all firmware options, our
method improves average runtime and energy consumption by
11% and 15%, respectively.

I. INTRODUCTION

Servers are the workhorse of high-performance computing
(HPC) clusters and datacenters. Commodity servers are de-
signed to cater to a large range of applications. As a result,
their hardware configurations tend to be geared towards the
typical workload. On the flipside, workloads exhibit large
variation in their characteristics that could be exploited by
designing servers with customized hardware configurations
to deliver improved performance and energy efficiency. For
instance, while employing a faster DRAM in a server helps
reduce runtime of applications that are memory-bound, a
slower CPU can help reduce power consumption of those that
are network-bound [1], [2]. However, since servers are meant
to support diverse workloads in a cluster, making application-
specific hardware component changes is impractical. Further-
more, creating a cluster by purchasing servers with different
hardware capabilities can complicate resource management
and increase costs. Instead, a more realistic approach is

to change the configuration of the available hardware and
software components.

Among the many potential ways of changing the configura-
tion of the hardware components [e.g., through virtual machine
managers (VMMs) and operating system (OS) parameters], we
observe that modern servers offer a large number of firmware
configurations (e.g., through the BIOS or UEFI) that can
be tuned with significant impact on the runtime and power
consumption of a server. In fact, some settings like those
related to memory and storage can only be tuned through the
firmware configuration.

Thus, by configuring firmware differently for different
servers, we can create a soft heterogeneous mix of servers
out of an originally homogeneous set that delivers improved
performance and energy efficiency for targeted workloads. In
comparison to purchasing custom servers, a soft approach to
creating heterogeneity allows us to change customizations with
a simple reboot of the servers.

The traditional approach of configuring the firmware in-
volves a human in the loop. System administrators follow
simple ad-hoc rules to identify the appropriate firmware set-
tings [3], [4], which can potentially lead to ineffective use
of the hardware components and is naturally prone to human
errors. In contrast, we propose an automated firmware option
exploration tool called FXplore that is far more effective in
finding firmware configurations of servers that can deliver
the maximum benefits in performance and energy efficiency.
Figure 1 contrasts the traditional approach with our approach.

There are several challenges in finding the optimal config-
urations. First, there are an exponential number of configura-
tions as a function of the number of firmware settings, which
makes identifying the optimal configuration for a workload a
hard problem. Second, creating a dedicated sub-cluster with its
own custom firmware configuration for each target workload
can complicate system management, especially if there are a
large number of target workloads. Third, administrators some-
times deploy co-runners on the same server. Through FXplore,
we provide a framework that addresses these challenges. We
make the following key contributions.

• We quantify the impact of firmware configurations on
the runtime and power consumption of a diverse range
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Fig. 1. FXplore enables soft heterogeneity in a cluster by customizing
firmware for target workloads to improve performance and energy efficiency.

of workloads. We demonstrate that the optimal con-
figurations for these workloads can be very different.
Furthermore, we show that the optimal configurations
cannot be derived by analyzing the impact of each of
the individual firmware settings in isolation.

• We propose an automated firmware configuration ex-
ploration methodology called FXplore that employs a
sequential-search heuristic algorithm to identify the opti-
mal configuration for any given workload with substantial
speedups compared to brute-force search. In particular,
for every n firmware settings, we show that we can reduce
the exploration time from O(cn) to O(n2).

• To simplify system management, FXplore uses machine-
learning (ML) techniques to trade-off the degree of
heterogeneity in the cluster with the optimality of the
performance and energy. In particular, FXplore uses k-
means to partition a homogeneous cluster of servers into
sub-clusters, each with its unique firmware configuration
and suitability for sets of targeted workloads rather than
a single workload. Thus, FXplore simplifies system man-
agement in the presence of heterogeneity.

• We extend FXplore to handle co-running workloads, such
that it identifies the firmware configurations for cases
when multiple workloads are run on the same server. We
also evaluate a number of techniques from the literature
geared for on-line operation to enable administrators to
map new workloads to existing sub-clusters depending on
the similarity to workloads in the training set.

• We validate our methodology on a fully-instrumented
cluster with eight server nodes using a diverse set of par-
allel workloads that span HPC applications and datacenter
workloads. We demonstrate that FXplore can improve
runtimes by 11% and energy efficiencies by 15% in
average, compared to baseline firmware configurations.
It can also accelerate firmware configuration exploration
by 2.2× compared to brute-force exploration.

The rest of the paper is organized as follows. In Section II,
we motivate the need for FXplore. In Section III, we de-
scribe our firmware configuration methodology including the
sequential exploration, sub-clustering and ML-based mapping
approaches. In Section IV, we present the experimental results.
In Section V, we discuss related work in the context of our
results, and finally, we conclude in Section VI.

II. MOTIVATION: IMPACT OF FIRMWARE CONFIGURATION

In this study, we aim to improve the performance and energy
efficiency of a server by customizing its hardware to the
software characteristics of the workloads using the options in
the firmware. Modern servers offer many firmware configu-
rations with each offering a different impact on the power-
performance levels of different workloads.

Table I lists five important firmware settings that are avail-
able in our servers through the BIOS. There are two settings
related to the cache performance: the hardware prefetcher
(HP) and adjacent cache-line prefetcher (CP). HP enables
prefetching between the cache and main memory, while CP
enables prefetching between cache and CPU cores. Enabling
HP and CP will benefit workloads with predictable memory-
access patterns and good data locality. CPU turbo boost (CT)
mode is another option that is also widely available in server-
class processors. CT enables processors to operate at a higher
frequency than the nominal especially when thermal and
voltage slacks are available. The speed of memory is another
configuration option that can be tuned from firmware. Our
servers provide control over the frequency through an option
called the memory turbo boost (MT). Enabling MT allows
the memory to run at a higher frequency (1066 MHz), while
disabling it lowers the speed (to 800 MHz). Thus, by enabling
MT, the system can potentially lower cost for memory ac-
cesses, which will provide a sizable benefit to memory-bound
applications. Hyper-threading (HT) allows throttling the server
performance through simultaneous multi-threading. By sharing
the hardware resources on a single physical processor core,
two different threads can be executed simultaneously. Ideally,
multi-threaded workloads may benefit from enabling HT at
the cost of some additional power. However, for workloads
with compute-intensive threads, enabling HT can, in fact,
create contention for the CPU core and degrade performance
compared to no HT. Thus, optimally configuring these five
firmware options is a highly nuanced and workload-driven
task.

FIRMWARE
SETTING

Description

Hardware
prefetcher

(HP)

Enabling HP fetches the data and instructions from memory
into cache before the processor loads them.

Adjacent
cache-line
prefetcher

(CP)

Enabling CP will make the processor always fetch two
adjacent cache lines.

CPU Turbo
boost (CT)

Allows CPU cores to scale up their clock frequency on-
demand depending on thermal or voltage slack.

Memory
Turbo boost

(MT)

Allows adjustment of the memory frequency to a higher or
lower value.

Hyper
threading

(HT)

Enables simultaneous multithreading, which allows threads
to share the processor resources where each physical core
is regarded as two virtual cores.

TABLE I
FIRMWARE SETTINGS THAT WE EXPLORE IN OUR STUDY.

2



0.8 0.85 0.9 0.95 1

normalized power

1

1.5

2

2.5

3

n
o
rm

a
liz

e
d
 r

u
n
ti
m

e
(a)BT

0.8 0.85 0.9 0.95 1

normalized power

1

1.5

2

2.5

3

n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

(b)CG

0.8 0.85 0.9 0.95 1

normalized power

1

1.5

2

2.5

3

n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

(c)LU

0.8 0.85 0.9 0.95 1

normalized power

1

1.5

2

2.5

3
n
o
rm

a
liz

e
d
 r

u
n
ti
m

e

(d)SVM

Fig. 2. Firmware configurations can have a large impact on the runtime and
power consumption of a server depending on the application characteristics.

Among the limited set of options provided by the version
of the firmware on our servers, we found that the above five
settings are the ones that impact power and performance
levels the most. Thus, we focus on these five parameters to
demonstrate the benefits of FXplore. However, with newer
firmware versions and server models, there are many more
configuration options that are available [4]. Such options
provide an opportunity for much finer grain firmware tuning
by FXplore. The basic premise of our work lies in the
fact that enabling or disabling firmware options can have
a large impact on the performance and power consumption
of servers as a function of the workloads. To illustrate this
point, we profile a number of parallel workloads on our
networked cluster that is composed of eight fully instrumented
Xeon-based servers. We select parallel workloads from the
NAS Parallel Benchmarks (NPB), which are representative of
HPC and workloads from the NU-MineBench benchmarks,
which are representative of data mining workloads. Since we
consider five firmware options, each server in the cluster can
be configured in total of 25 = 32 different ways. Since we run
an application on the entire cluster, we enforce any chosen
firmware configuration on all of our servers. For instance,
consider four exemplary workloads from our two benchmark
datasets. Figure 2 shows the runtime and power of these
workloads under the 32 possible firmware configurations. All
results are normalized with respect to the results when all
firmware options are enabled. The trends in the figure lead
us to our first observation.

Observation #1:. Firmware settings can have a large impact
on the performance and power consumption of applications
since each application has its own unique characteristics. For
instance, from Figure 2, we see that application CG shows
173% variation in runtime as a function of the firmware
settings. However, application SP shows 59% variation in
runtime as a function of the firmware settings. Given these
large application-dependent variations in runtime and power,

Runtime-optimal Configurations Energy-optimal Configurations

NAME CT MT HT HP CP Runtime CT MT HT HP CP Energy

BT X X X X 5 0.982 5 X X 5 5 0.962
CG X X X X 5 0.937 5 X X 5 5 0.915
LU X X 5 X 5 0.629 5 X 5 5 X 0.569

SVM X X 5 X X 0.701 5 X 5 5 X 0.655

TABLE II
OPTIMAL FIRMWARE SETTINGS ARE DIFFERENT FOR EACH OF THE FOUR

APPLICATIONS CONSIDERED IN FIGURE 2. FURTHER, DIFFERENT
SETTINGS OPTIMIZE RUNTIME AND ENERGY CONSUMPTION.

it is imperative to ask if there are any shared optimal settings
among various applications or whether there is a simple
characterization for the optimal runtime and energy efficiency
based on the firmware settings.

Observation #2:. The optimal firmware configurations vary
by application, where each application could have its own
distinct optimal configuration for performance and energy
efficiency. Table II illustrates how the optimal configurations
for minimizing runtime and energy consumption of the
four workloads can be drastically different. The results
interestingly show that enabling all firmware settings does not
necessarily lead to the best runtime or energy efficiency. One
possible reason for this behavior is that the enabled options
could conflict with each other. Further, different applications
have different sensitivity to the firmware settings. Turning on
some firmware settings might not yield good performance
improvement or even not have a positive impact. For instance,
enabling HT reduces the runtime of many workloads, but it
hurts LU and SVM. The results also show that the optimal
settings for runtime minimization may not be the best settings
for energy minimization.

Observation #3:. There are subtle interactions among the
firmware configurations that do not necessarily add up to
provide or diminish gains. Thus, combining settings that
yield better results individually may not necessarily further
improve the results, and similarly combining settings that
have a negative impact individually might surprisingly lead
to a positive impact. Figure 3 illustrates the inter-dependency
between MT and HP. In the figure, we compare the runtime
under three different firmware configurations: enabling only
MT, enabling only HP, and enabling both MT and HP. The
runtime is normalized against the case that all five settings
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Fig. 3. The normalized runtime of workloads under firmware configurations
with only HP enabled, only MT enabled, and both HP and MT enabled shows
how the interdependence between firmware options is application specific. The
baseline (i.e., runtime = 1) case is where all five options are enabled.
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Fig. 4. Overview of FXplore. It comprises two operation modes. First, is an offline mode where we use sequential search and sub-clustering to find the
optimal firmware configurations for groups of servers. This requires rebooting the servers several times. Second, is the online mapping stage, where we use
machine learning algorithms to map incoming workloads to appropriate sub-clusters requiring no rebooting of the servers.

are enabled. The runtime of disabling all firmware options is
also plotted for reference to show the impact of the individual
options. From the results, for most of the applications such
as BT, LU, SP, HOP, and SPC, enabling HP and MEM
individually improves the runtime over all-disabled case and
enabling both of them delivers greater improvement. However,
for CG and KM, enabling both of them yields worse runtimes
compared to the cases where only MT is enabled. And for
FT, IS, MG, and SVM, although only enabling HP makes
the runtime worse than the all-disabled, when HP is enabled
together with MT, the runtime is improved, comparing to the
case where either HP or MT are exclusively enabled.

We thus conclude that there is no ideal firmware configura-
tion that is optimal for all kinds of workloads. Also, there
is no simple rule that could give us the optimal firmware
configuration for a given application. Thus, an intelligent and
efficient method to determine the optimal configuration for any
given application is highly desirable. Next, we present FXplore
that precisely addresses this problem.

III. FXPLORE METHODOLOGY

In this section, we present the methodology of FXplore. We de-
scribe how it enables system administrators to partition servers
into sub-clusters such that each sub-cluster is configured with
a different firmware configuration to improve performance
and/or energy efficiency for target workloads. Figure 4 gives
an overview of our methodology. There are two modes of
operation. First is the offline mode, where given a set of M tar-
get workloads, we partition them into κ sub-clusters, afforded
by the administrator, and derive the optimal configurations
for the sub-clusters in a fast and effective manner. Second
is the online mode, where incoming workloads are profiled
using hardware performance counters (PMCs) and mapped to
one of the existing sub-clusters with a pre-determined optimal
configuration. This process requires no reboots of the servers
and is invoked during regular use of the servers. Note that if
M = κ then each workload can afford its own sub-cluster with
optimal settings. However, it is expected that κ < M because
a large κ can complicate cluster management.

Today, for system administrators, the only available alter-
native to FXplore is brute-force enumeration, where the out-
comes (i.e., runtime and energy) under all possible firmware
settings need to be enumerated for every workload. Among
these settings, the one that gives the best results needs to

be chosen and used for the server. For N firmware options,
brute-force enumeration requires an exploration of 2N settings
per workload (e.g., 32×M reboots of the server are required
for M workloads and 5 firmware options), which is not
scalable especially when modern high-end servers provide 10-
15 firmware options that could impact the power/performance
of applications [5]. Through FXplore, we propose to reduce
this firmware exploration time complexity from 2N to O(N2).
Further, once the one-time exploration process is completed
offline, we provide a methodology to map new incoming
workloads in real time to sub-clusters of servers with pre-
determined optimal configurations. We describe the details of
our offline heuristic exploration and sub-clustering methodolo-
gies in Sections III-A and III-B, respectively. The details of the
on-line operation are given in Section III-C. In Section III-D,
we extend our methodology to handle the case when co-
runners are enabled; i.e., when multiple applications are run
on the same server.

A. Identifying the Optimal Firmware Configurations

This is the first part of the offline process in FXplore, which
needs to be run one time with O(N2) server reboots. In this
method, we follow an iterative sequential approach to optimize
our cost function (i.e., performance or energy) with the aim to
minimize the search space of firmware options. Our approach
seeks to capture the subtle interactions of the firmware con-
figurations as outlined in observation #3 in Section II, which
concluded that the improvements in performance or energy
obtained by a combination of firmware options is not equal to
a simple superposition of improvements due to each option.
The procedure for our proposed sequential search method,
FXplore-S, is given in Algorithm 1. At the outset, we enable
all candidate firmware options and label them as free (step 1).
Then, in each iteration (step 2), we profile the input workload
by temporarily disabling one free firmware option at a time
(steps 3, 4, and 6). During this time, for each option, we also
measure and register the cost function i.e., runtime or energy
consumption (step 5). After this, we disable the option that,
when it is disabled, the cost function is minimized. We also
label that option as locked for all subsequent iterations of
the procedure (item 7). At the kth iteration, N − k + 1 free
options are evaluated and the one with the highest impact
on the cost function is disabled and locked. Thus, to disable
and lock N firmware options, we will need N iterations.
After completing N iterations, we rank the results from all

4



Algorithm 1 FXplore-S: Offline sequential-search algorithm
to determine the optimal firmware configuration.
Input: Workload and N candidate firmware options
Output: Optimal configuration for input workload

1: initialize Enable all N options and label them as free
2: for k =1 to N do
3: for each free firmware option do // Option locking
4: Disable the firmware option
5: Run workload, measure, and record runtime/energy
6: Enable the firmware option
7: end for
8: Disable option that, when disabled, allowed the work-

load to achieve best results in Step 5 and label it as
locked.

9: end for
10: Repeat steps 2-8 until all options are disabled.
11: Search the shortlisted optimal configurations and find the

one that gives the best result overall.

iterations by their cost-function value, and set the combination
of firmware options that globally minimize the cost function.

The exploration time complexity of FXplore-S is N +(N −
1) + · · ·+ 1 = O(N2), which is a substantial improvement
compared to the exponential complexity (i.e., 2N) of brute-
force enumeration. Our approach can also be extended to
handle non-binary firmware options. We convert a non-binary
firmware option to a group of binary options and configure
them using FXplore-S. However, during the locking stage, we
lock the group as a whole instead of considering the binary
options in the group separately.

B. Deriving the Sub-clusters

This is the second part of the offline process, which also needs
to be run one time during configuration of the servers. If
the system administrator can afford a dedicated sub-cluster
for every target workload, then the firmware configurations
identified by FXplore-S can be directly used. In reality the
number of sub-clusters is likely to be smaller than the number
of target workloads. Thus, in this section we propose a method,
FXplore-SC that aims to partition the target workloads into
groups with consistency so that they can be executed together
in the same sub-cluster configured with the same firmware
configurations.
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Fig. 5. Plot of truncated feature vectors (only three performance counters
out of the five) and their natural clusters.

FXplore-SC proceeds by (1) grouping applications based on
their system-level performance characteristics, (2) identifying
the optimal configurations for a representative application from
each group using FXplore-S, and (3) applying the firmware
configurations from the representative application of each
group to the remaining workloads in the group. The insight
behind this procedure is that workloads that exhibit similar
system-level performance characteristics should have similar
firmware settings.

To measure similarity of workload characteristics, we resort
to PMCs. PMC values reveal subtle characteristics of the work-
loads since they are directly associated with their hardware
interactions. For each workload, we compute the average PMC
values over time and then per core. For our benchmarks, we
collected 13 PMCs covering a diverse range of characteristics.
We then computed the principal component analysis (PCA) of
the PMC measurements and analyzed the PCA scores of the
performance counters. The PCA analysis reveals that the most
relevant performance counters are the number of instructions
retired, L1 data references, L2 data-cache misses, last-level
cache (LLC) misses, and mispredicted branch instructions. As
it is difficult to visualize high dimensional data, we selected
three of the five counters: LLC misses, branch prediction
misses and L1 data cache references and plotted their three-
dimensional feature vectors in Figure 5. In the figure, the PMC
values are normalized. We can clearly see clustering of the
benchmarks even in this lower-dimensional space. FXplore-
SC is based on PMC values. Its procedure is shown in
Algorithm 2. Given a set of workloads, we first quantify the
characteristics of each workload in the set by running it on
a baseline configuration (e.g., where all firmware options are
enabled). We do this quantification by collecting the PMCs
mentioned above (step 1). Thus, the average PMC values com-
prise the feature vector for every workload (step 2). After this,
we apply the k-means algorithm to group the workloads into κ

groups (step 3). The clustering algorithm works by minimizing
the distance between the group members (i.e., workloads) and
maximizing the distance between the group centroids. For
each group (step 4), we pick a representative workload and
Algorithm 2 FXplore-SC: Offline process to determine sub-
clusters of servers and fix their optimal configurations.
Input: Workload set and desired clustering granularity.
Output: Optimal configurations for the subclusters.

1: initialize Run every workload on the baseline configura-
tion and collect its PMC values.

2: Average the PMC values for each workload in the set to
produce a corresponding unique feature vector.

3: Apply k-means clustering on the feature vectors to parti-
tion the workloads into κ groups.

4: for each group ε do
5: Pick random workload from the group; apply FXplore-S

to determine its optimal firmware configuration.
6: Use this optimal firmware configuration for the remain-

ing workloads in the group.
7: end for
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determine its optimal configuration using FXplore-S (step 5).
Finally, we employ these settings for all other workloads of
the group (step 6).

The value of κ is chosen by the system administra-
tors, which provides them with the flexibility to trade-off
the amount of heterogeneity and improvement in perfor-
mance/power against the amount of management overhead.
At its extremes, κ = 1 leads to one nominal firmware con-
figuration that is used for all servers, and κ = M provides a
high degree of customization, where every application gets it
own sub-cluster that is optimally configured according to its
characteristics. It is up to the system administrators to decide
the acceptable amount of heterogeneity in the cluster. We will
evaluate the impact of κ in Section IV.

C. On-line Operation
This is the online process in FXplore, which is run all
the time and it requires no server reboots. Once the sub-
clusters of servers have been identified and set to have optimal
configurations using a number of representative or training
workloads, the mapping of a new workload is done based on
the similarities to the training workloads. A number of works
in the literature tackle this problem [6], [7]. For instance, Liao
et al. evaluate a number of ML techniques, such as decision
trees (DT) and support vector machines (SVM), to map new
workloads to a target set of trained workloads as a function of
the features of the workloads [6]. We follow a similar approach
in this paper. In our case, a new workload is profiled on a
baseline server to get its PMC-based feature vector. Then it
is mapped using nearest-neighbor (NN) search into one of
the existing groups based on the distance between its feature
vector and the centroids of the groups, where the cluster with
minimum distance is chosen. Once, we map a new workload
to a cluster, we use the configuration of the cluster for the
incoming workload.
D. Workload Co-location
In many modern clusters, a single server might host multiple
workloads concurrently to leverage the availability of the large
number of cores or processor sockets. A number of prior works
consider the interference arising from allocating workloads
on the same server and provide techniques to identify the
optimal pairing of co-running workloads to minimize the
degradation in performance [7], [8], [9], [10]. We address the
co-runner problem by leveraging these prior works to extend
our framework so that co-runners are enabled as follows.

1) A desired workload allocation algorithm is first run to
identify the optimal pairing of application co-runners on
a server with a baseline firmware configuration.

2) If (w1,w2) are identified to be an optimal pairing of
two applications w1 and w2, then FXplore-S is executed
to identify the best firmware configuration for the pair
simultaneously.

3) If clustering is required, then the average per-core PMC
vector from running both workloads is first profiled. This
average vector is then used as part of the feature space
in the sub-clustering algorithm FXplore-SC.

We evaluate the effectiveness of FXplore in handling co-
runners in Section IV-D. Note that we do not propose any
new workload co-location or scheduling algorithm. Instead,
we observe that co-runner algorithms can have cyclic de-
pendencies with firmware tuning; i.e., there is a possibility
that the results of the co-runner algorithm depend on the
firmware configuration chosen in the first place. We broke that
dependency by choosing to identify the optimal co-runners on
a baseline server using existing co-runner algorithms; however,
the possibility of co-optimizing the firmware configuration and
co-runner pairs of applications can lead to further improve-
ments in future work.

IV. EXPERIMENTAL RESULTS

We present experimental results that validate the ability of FX-
plore to determine the runtime- and energy-optimal firmware
configurations for various workloads, while providing system
administrators with the ability to control the degree of soft-
heterogeneity through sub-clustering. To evaluate FXplore, we
use a cluster of 8 Dell PowerEdge C1100 servers. Each server
is equipped with dual Xeon L5520 quad-core processors (total
8 cores) and 40 GB of DRAM. They run Ubuntu 12.4 and
AMI BIOS version 2.66. We use the perfmon2 tool to
collect PMC values from the servers. To determine the total
power consumption of the cluster, we created a measurement
environment that senses the current flow through the power
cord of each server.

We profiled a large set of benchmarks to evaluate the effec-
tiveness of FXplore. In particular, we consider workloads from
the following two sets of parallel benchmarks: (1) eight work-
loads from NPB representing computational fluid-dynamics
applications: BT, CG, EP, FT, IS, LU, MG, and SP) [11]
and (2) six workloads from NU-MineBench representing data
mining applications: HOP, kmeans(KM), SVM, Utility
Mining(UM), RSearch(RS) and SaclParC(SPC))
[12]. NPB is designed to characterize HPC clusters, while
NU-MineBench comprises datacenter-like workloads. We con-
figure each workload as 64 threads (8×8) to execute on our
experimental cluster. We double the number of threads when
hyper-threading is enabled.

To establish ground truth for the optimal configurations, we
exhaustively search through all possible firmware configura-
tions. For every configuration, we collect PMC values, power
consumption and the runtime of each workload, and compute
the energy consumption and exploration time for exhaustive
search. Note that to collect the PMC values in our experiments,
we run our parallel workloads to completion. We next assess
the effectiveness of FXplore.

A. Sequential Search Results

In this subsection, we present experimental results for the
offline exploration mode of FXplore i.e., FXplore-S. We
demonstrate the effectiveness of FXplore-S in finding the
optimal configurations for a given workload, while attaining
large reductions in exploration time compared to brute force.
We consider the following configurations:
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Fig. 6. Normalized runtime improvement of workloads with different
firmware configuration methods. Normalized to all-enabled.

1) all-enabled: We enable all the five firmware options.
The runtime (or energy) under other firmware configu-
rations are normalized with respect to this runtime (or
energy). We choose it as baseline configuration in all
experiments of Section IV.

2) FXplore-S: We run our sequential search algorithm to
find the best configuration. We consider two cases: a
runtime-driven case that seeks to minimize runtime, and
an energy-driven case that seeks to minimize energy.

3) Brute-force: We use a brute-force enumeration on all
configurations to find the optimal configuration for op-
timizing runtime or energy consumption.

Optimizing runtime: We report the normalized runtime of
all workloads using the different configuration methods above
in Figure 6. From the results, we can draw the following
conclusions. Enabling all options does not necessarily deliver
near-optimal results as is obvious in the cases of LU, KM,
SVM, and SPC. One possible reason for this behavior is
that the enabled firmware options conflict with one another.
For instance, if a workload contains several spin-wait loops,
enabling HT can create memory-order conflicts and slow
down execution. Now, in such a case, if we enable HP in
addition to HT, the server can end up with a large number
of unusable memory fetches, which may lead to thermal
issues and throttling. Thus, the overall performance of the
workload may suffer substantially. Figure 6 shows that
FXplore-S always finds the optimal or near-optimal firmware
configuration for all the workloads except for the runtime
of UM, which is 2% longer than the optimal. FXplore-S
finds the exact optimal configurations for the rest of the
workloads. Overall, FXplore-S improves runtime by 11% over
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Fig. 7. The normalized exploration time of each workload, normalized to
Brute-force.
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Fig. 8. Normalized energy improvement of workloads with different
firmware configuration methods. Normalized to all-enabled.

the all-enabled configuration on average. In terms of
exploration time, the results in Figure 7 demonstrate that the
average exploration time of FXplore-S is only 46% of brute-
force search; that is, FXplore-S speeds up the exploration
time by 2.2×. Note that the speed-up will increase with more
firmware settings because the exploration time of FXplore-S
grows quadratically, while that of brute-force search grows
exponentially.
Optimizing energy efficiency: Energy efficiency is another
important objective for clusters. Therefore, in this second
experiment, we switch FXplore-S to the energy-driven case
where we determine firmware configurations that minimize
the energy consumption for various workloads. For the five
options, unlike the impact of the firmware configuration on
runtime, the effects on power consumption are more or less
predictable. In particular, disabling any of the five options
always saves power. Since energy is the product of power
and runtime, the impact of the firmware configurations on
energy is determined by how pronounced are the savings
in power. Figure 8 gives the energy consumption of the
workloads for various firmware exploration methods, where
we normalize the energy numbers with respect to the energy
measurements from all-enabled. From the figure, we
observe that by using FXplore-S we can almost always find
the energy-optimal or near energy-optimal configuration. The
speed-up in exploration time in the energy-driven case is
similar to the runtime case.
Scalability of FXplore with number of firmware settings.
Since FXplore-S is a heuristic algorithm. In this section, we
study its effectiveness and scalability in finding the optimal
configuration as a function of the number of available settings
N. Since our evaluation servers provide only a limited number
of firmware options that we can tune, we consider the cases of
N = 2-5. We use exploration error as a metric to evaluate the
effectiveness of FXplore-S. For any workload N, let To(N) be
its runtime under its optimal configuration (found by brute-
force search) and Ts(N) be the runtime under the firmware
configuration identified by FXplore-S. Then, we define explo-
ration error as:

exploration error(N) =
Ts(N)−To(n)

To(N)

and exploration accuracy as equal to 1 minus the exploration
error. We report this number using the y-axis on the right hand
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Fig. 9. FXplore-S only shows a slight linear increase in estimation error
with increasing number of firmware options.

side of Figure 9. We observe a near negligible degradation in
exploration accuracy as we go from 1 to 5 firmware options.
On the y-axis on the left hand side of Figure 9, we also
report the average number of mispredictions that we get for
all the candidate workloads using FXplore-S. Again a small
degradation occurs because of the increase in depth of the
search path; however, the inaccuracy is considered almost
negligible from a practical perspective. Unlike the cases of
N = 3 and N = 4 firmware options, where we have

(5
3

)
= 10

and
(5

4

)
= 5 estimation samples, respectively, the case of N = 5

options has only one sample, which makes it sensitive to
experimental noise. The overall trend is that exploration error
grows linearly, which means the accuracy will not decrease
drastically when more firmware options are considered.

B. Clustering Results

In this subsection, we evaluate the second part of the of-
fline mode in FXplore, i.e., FXplore-SC. In particular, we
assess how well can FXplore-SC derive sub-clusters with
heterogeneous configurations. The number of sub-clusters κ

is a configurable parameter and is chosen by the system
administrator depending on management costs. Since we have
14 benchmarks, we can potentially vary κ from 1 to 14 and
evaluate the resulting runtimes of the workloads under differ-
ent clustering results. Note that when κ = 14, the FXplore-
SC method becomes essentially the FXplore-S method since
no clustering is involved, and each workload gets it optimal
configuration. However, choosing the optimal number of sub-
clusters in general is a challenging task in itself. Choosing a
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Fig. 10. Workload runtime under sub-clusters firmware configurations created
by FXplore-SC, when κ = 4, i.e., four sub-clusters.

runtime (×) runtime (×)
Classification Method Optimal

name NN (our approach, FXplore) SVM DT

BT 0.982 1.371 1.371 0.982
CG 0.937 2.101 2.101 0.937
EP 0.982 0.982 1.547 0.982
FT 1.000 1.000 1.010 1.000
IS 0.962 1.359 1.359 0.962
LU 0.629 0.629 0.629 0.629
MG 0.968 1.116 1.116 0.968
SP 1.029 1.029 0.879 0.879

HOP 1.043 1.043 1.292 0.999
KM 1.161 2.242 2.242 0.908

SVM 0.711 0.711 0.982 0.711
UM 0.999 1.103 1.096 0.999
RS 1.000 1.000 1.514 1.000

SPC 0.789 0.789 1.038 0.789

Average 0.942 1.177 1.298 0.910

TABLE III
EFFECTIVENESS OF DIFFERENT MACHINE-LEARNING ALGORITHMS IN

MAPPING NEW WORKLOADS TO SUB-CLUSTERS

small number of clusters will minimize the heterogeneity of
the servers, while a large number of them will complicate sys-
tem management. Thus, to maintain a good tradeoff between
management overheads and the amount of heterogeneity, we
choose four sub-clusters for our experiments.

Figure 10 shows the runtime of each workload in four
sub-clusters, i.e., κ = 4. Again we normalize runtimes to the
all-enabled firmware option. In the figure, we compare the
normalized runtime of each benchmark under the optimal
configuration of the sub-cluster it belongs to and its own
individual optimal configuration (determined by brute-force
search). We observe that the average runtimes of the workloads
under optimal sub-cluster level firmware configurations are
only 5% higher than under individually optimal configurations.

C. Evaluation of On-line Mapping Methods

In this subsection, we evaluate the on-line mode of FXplore,
where incoming workloads from a scheduler get mapped to
sub-clusters that are statically pre-programmed with different
firmware configurations. For this mode, we leverage some of
the existing ML techniques in workload mapping [6], [7], [8].
For high statistical confidence, we employ leave-one-out cross
validation of the workloads. Accordingly, we use the offline
mode of FXplore for all but one workload to determine the
sub-clusters and their optimal configurations. Then, we use the
PMC-based feature vector of the isolated workload to map it
to the sub-clusters using different ML techniques such as DT
and SVM, which have been tested in [6] as well as NN, which
is used in FXplore. We repeat this process to isolate every
workload in our test set. Our results presented in Table III
show that NN works as well as any other classifier and there
is no best mapping algorithm. Overall using NN-based online
mapping and four sub-clusters, we find that there is an average
of 3% discrepancy in runtime compared to the optimal.

D. Results with Workload Co-location

In this subsection, we show that FXplore works for mixture of
workloads allocated on the same server. Note that we do not
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Fig. 11. Avg. runtime of co-located workloads under different firmware
configurations, normalized to their average runtime under the baseline con-
figuration.

propose workload co-location or scheduling algorithm. But,
rather we study the impact of FXplore-based mapping and
firmware configuration when we have a mixture of workloads
running on a server. To simulate co-located workloads in a
realistic setting, we configure each benchmark to occupy four
threads per server. Since the first step is to run a co-runner
interference algorithm to identify good pairings, we profiled
all possible combinations of NPB benchmarks to find, for each
benchmark, which other benchmark offers least interference
when co-located on the same server. By profiling all possible
pairs, we identify the optimal pairs and reduce the “noise” that
can be introduced in the experiment if a heuristic interference
method is used. We have 8 pairs of benchmarks and run
them on all the firmware configurations to evaluate the ability
of FXplore to deal with a mixture of workloads. Figure 11
gives the average normalized runtime of the two co-located
workloads under different firmware configurations, normalized
to the runtime of benchmarks co-running under the baseline
firmware configuration. The results show that FXplore-S can
always find the optimal settings. If four subclusters are desired,
then FXplore-SC results in only a 4.4% increase in runtime
compared to the optimal case when each pair gets their own
optimal configuration.

Compared to the case of a single workload, we have found
that FXplore tends to enable more firmware settings when
there are co-runners. The reason is that optimal pairing usually
pairs workloads that have distinct characteristics to reduce in-
terference; for example, a co-runner pair might include a CPU-
intensive application and a memory-intensive application to
reduce competition for hardware resources and have minimum
interference with each other. However, pairing the workloads
in this way will average their performance characteristics
and make the combination of them both CPU-intensive and
memory-intensive, which leads to enabling more firmware
options. However, in many cases, there are possibly subtle
interactions between the firmware setting preferences and co-
location interference. For example, it might be better to run
a workload under its own optimal configuration with a sub-
optimal co-runner, instead of scheduling it together with an
optimal co-runner on a server with a sub-optimal configura-
tion. A future direction is to find the best matching between
servers and workloads after creating the heterogeneity.

V. RELATED WORK

Since applications often have varying hardware-resource re-
quirements, heterogeneity helps improve the performance and
energy-efficiency of large-scale computing platforms. In the
literature, employing heterogeneous hardware resources has
been shown to improve the performance of cloud-computing
clusters [7], [8], [9], [13], [14]. Specifically, in [13] and
[9], Mars et al. have quantified the potential performance
improvements that can be achieved by smartly leveraging the
heterogeneity in the instruction-set architecture and hardware
resources of servers. Subsequent works such as [8] and [7]
have proposed methods that employ in-place continuous work-
load profiling techniques and scheduling to better utilize het-
erogeneous computing fabrics in warehouse-scale computers.
Despite these benefits, cluster operators usually tend to pur-
chase servers with homogeneous hardware configurations in
order to minimize cost and resource-management issues. Thus,
the existing heterogeneity in server clusters and datacenters
is minimal. Consequently, the attainable performance benefits
using the aforementioned approaches are limited. Our work is
complementary to these existing techniques since it allows us
to increase the level of soft-heterogeneity in servers by simply
altering their configurations.

Our work focuses on changing hardware-resource config-
urations of a server through the firmware. Many hardware
configurations (e.g., memory and storage settings) cannot be
changed via the OS or VMMs. There exists a large amount of
prior work that employs software techniques such as voltage
and frequency scaling of the processor [2], [15], [16] and main
memory [17], [18], [19]. Although these are effective methods
to control the server behavior, we believe there are many more
control knobs to improve or impair server performance and
energy efficiency, which can only be controlled through the
firmware. CPU hyper-threading is one such example, which
is shown to significantly impact application performance [20],
[21]. It is important to note that our methodology applies to
configure even those options (e.g., CPU and cache settings)
that can typically be changed in software.

When it comes to related workload mapping techniques,
there is some work in the compiler community [6], [22] that
employs ML to tune memory prefetch settings in software
and in firmware. [23] provide an overview of some of these
approaches. Particularly interesting is [6], where Liao et al.
adjust four memory prefetch settings and collect performance
counters to build ML models, which optimize any memory
performance parameter such as throughput or cache miss rate.
For new workloads, they use these models and predict the
optimal configurations. These techniques are relevant but apply
only to the online mapping mode of FXplore and we in fact
leverage these techniques in Sec. IV-C. In Table III, we com-
pared various ML techniques used in [6] and FXplore during
the online mapping stage. We observe minimal performance
differences among these approaches.
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VI. CONCLUSIONS

Heterogeneity is a powerful capability in a cluster of servers.
It allows workloads to fully exploit the potential of hardware.
Unfortunately, commodity servers are expected to handle a
diverse range of workloads, which makes it infeasible to cus-
tomize hardware on these servers such that every workload’s
performance and energy-efficiency is maximized. In this paper,
we demonstrated that firmware options provide relatively
strong knobs to introduce soft heterogeneity in a cluster of
servers. We showed that both the performance and energy con-
sumption of workloads can be highly sensitive to the firmware
settings. However, determining the optimal configuration is
not an easy task, because of the exponential complexity in
the number of configurations. Thus, we proposed FXplore to
intelligently explore the firmware configuration design space
and reach the optimal configuration with a fast exploration
time. Our methodology involves two modes of operation: (1)
a one-time offline mode that requires multiple server reboots to
explore firmware settings and determine the server sub-clusters
and (2) online mapping mode, where incoming workloads
from a scheduler get profiled using PMCs and mapped to the
sub-clusters wherein a group of servers share the same optimal
firmware settings. We demonstrated big gains in exploration
time across a range of workloads, which is expected to be
substantially higher as the number of options increase in
emerging server. We also showed how FXplore can identify
optimal configurations when co-runners are used. Furthermore,
we evaluated the online mapping mode of ML techniques
that map new incoming workloads, without requiring a reboot
of any server, to existing sub-clusters with pre-determined
firmware configurations.

Although some CPU-related hardware settings can be set
through the OS and VMMs, many memory and storage related
options could usually only be set from firmware. In this paper,
we wanted to highlight that there is an opportunity beyond
OS tuning to achieve heterogeneity in servers through the
firmware. The fact that we can control some of the hardware-
software options via the OS and VMMs makes our work
even more relevant because we can get rid of some of the
reboot overheads during the offline mode of FXplore. The
overall algorithm, however, remains intact even when changing
options through the OS or VMMs. Thus, FXplore brings us
one step closer to realizing a heterogeneous cluster of servers
out of an originally homogeneous set of servers with no
additional costs or management overheads generally associated
with equivalent hardware changes.
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