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ABSTRACT
We propose techniques for power budgeting in data centers, where
a large power budget is allocated among the servers and the cool-
ing units such that the aggregate performance of the entire center is
maximized. Maximizing the performance for a given power budget
automatically maximizes the energy efficiency. We first propose a
method to partition the total power budget among the cooling and
computing units in a self-consistent way, where the cooling power
is sufficient to extract the heat of the computing power. Given the
computing power budget, we devise an optimal computing budget-
ing technique based on knapsack-solving algorithms to determine
the power caps for the individual servers. The optimal computing
budgeting technique leverages a proposed on-line throughput pre-
dictor based on performance counter measurements to estimate the
change in throughput of heterogeneous workloads as a function of
allocated server power caps. We set up a simulation environment
for a data center, where we simulate the air flow and heat transfer
within the center using computational fluid dynamic simulations
to derive accurate cooling estimates. The power estimates for the
servers are derived from measurements on a real server executing
heterogeneous workload sets. Our budgeting method delivers good
improvements over previous power budgeting techniques.

ACM Categories & Subject Descriptors C.5.5 [Computer System
Implementation]: Servers.
General Terms: Management, Performance, Algorithms.
Keywords: Power, Budgeting, Management, Data Centers.

1. INTRODUCTION
Data center and computing clusters with hundreds or thousands

of servers consume excessive amounts of power, with large facil-
ities consuming up to 20 MW for a total cost of $12 million per
year [14, 3]. As a result, the total cost of ownership of data cen-
ters is dominated by power consumption, which constrains total
performance and scalability [7, 14, 11]. In many cases, the power
consumption of a facility at any moment of time must be capped
below a maximum limit that is specified by the electric grid opera-
tors and the electrical current carrying capacity of its power cables
[7, 8].
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One of the challenges in server power management is that dif-
ferent workloads trigger different power consumption patterns, and
thus the power management settings that work for one set of work-
loads do not necessarily work for another set of workloads [9, 5].
As a result, one needs to find settings for each server that lead to
a global optimal for the entire computing facility. Another chal-
lenge is that the total power consumption of a data center is the sum
of the power consumption of its computing servers and the Com-
puter Room Air Conditioning (CRAC) units, where the power con-
sumption of the CRAC units depends on the power consumption of
servers and the hot spots in the layout of the center [1]. The goal
of this paper is to devise new power budgeting technique, where
the total power budget is allocated among the servers and cool-
ing equipment to maximize the total throughput, or equivalently
minimize the average runtime. We summarize our contributions as
follows.

1. We propose a novel method to partition the total power bud-
get between the computing servers and cooling units in a
self-consistent way, where the cooling power meets the heat
removal requirements for the computing power, which is al-
located using an optimal power budgeting technique.

2. We propose a novel throughput predictor for servers with
heterogeneous workload sets, where the measurements from
the performance counters are used to estimate the change in
the throughput as a function of the server power cap.

3. Leveraging the throughput predictor, we propose an opti-
mal computing power budgeting technique that is inspired by
methods for solving the well-known knapsack problem. The
budgeting technique identifies the optimal power caps for the
servers, such that the total server power meets the computing
budget and the total throughput is maximized.

4. We setup a realistic simulation environment for a data center
with a large number of servers, where the power estimates for
the servers are derived from real measurements on a server
executing heterogeneous workload sets. We use Computa-
tional Fluid Dynamics (CFD) simulations to ensure accurate
modeling of air flow and heat transfer within the center, and
use the CFD results to estimate the cooling power. We ex-
perimentally demonstrate the advantages of our power bud-
geting method compared to previous approaches.

The organization of this paper is as follows. In Section 2, we
describe previous related techniques in the literature. We formulate
the power budgeting problem and describe our proposed framework
in Section 3. Our experimental results are presented in Section 4,
and Section 5 provides the conclusions of this work and directions
for future work.



2. RELATED WORK
A number of models have been proposed in the literature to cap-

ture the relationship between the throughput and power of a single
server. For example, Rajamani et al. proposed linear models [17]
and Gandhi et al. proposed linear and cubic models [8]. The coeffi-
cients of these models are functions of the server configuration and
the workload characteristics. In these previous works, fixed values
for these coefficients were assumed irrespective of the workload
characteristics. These values were obtained through prior charac-
terization of standard benchmarks. As a result, these models are
likely to show prediction errors for throughput and power in case
heterogeneous applications with wide range of characteristics are
executed on a cluster.

To enforce a required power cap, a number of previous approaches
have proposed equipping each server with a feedback controller
that computes the observed difference between the measured power
and the power cap, and accordingly adjusts the p-state of the server
using dynamic frequency and voltage scaling (DVFS) [10, 16]. If
the difference is positive then DVFS is decreased, and if the differ-
ence is negative then DVFS is increased. To determine the power
cap of each server, a number of power budgeting methods have
been proposed [13, 8]. Ghandi et al. proposed power budgeting
methods for servers that execute the same workload. This situation
can be useful for data centers that execute transactional workloads
of the same nature; however, they are not relevant for computing
facilities that execute high-performance computing (HPC) applica-
tions. These later facilities typically have high utilizations where
most of the servers are fully utilized executing a large range of
workloads with heterogeneous characteristics. Nathuji et al. con-
sider the case of power budgeting for heterogeneous workloads and
servers [13]. The main proposed approach is a greedy method,
where the throughput per Watt for the servers are calculated, and
then servers with higher throughput per Watt are allocated more
power during budgeting.

A related problem to power budgeting in data centers is the prob-
lem of power allocation in multi-core processors [9, 18]. Power
budgeting for data centers is different in a number of ways: (1) un-
like independent servers, multi-core processors do not offer power
cap controllers for the individual cores; (2) workloads on a multi-
core processor are likely to show memory interference issues, whereas
workloads servers are relatively independent unless they explicitly
communicate using message passing; (3) data centers feature air
conditioning units that have to be considered during power budget-
ing; and (4) the interactions between computing and cooling power
in data center are highly complex in nature.

3. PROPOSED APPROACH
We assume that a data center or a computing cluster is composed

of n servers with identical hardware configuration and m CRAC
units. We make the general assumption of heterogeneous workload
sets, where different servers and different cores within the same
server can be executing different workloads, and that the set points
of the CRAC units can be controlled independently. We assume a
closed-loop queueing model where all servers are fully utilized. As
a result, maximizing the total throughput is equivalent to minimiz-
ing the response time [8].

Problem Formulation: Given n fully utilized servers with hetero-
geneous workloads, m CRAC units, and a total B power budget,
the objective is to distribute the total power among the n servers and
m CRACs, such that the total throughput is maximized or equiv-
alently the average response time is minimized. That is, if τi(pi)
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Figure 1: Impact of power cap on the throughput of a server.

and pi denote the throughput and allocated power for server i re-
spectively and ck denote the cooling power of CRAC k, then the
goal is to maximize

Pn
i=1 τi(pi) such that Bs + BCRAC ≤ B,

where Bs =
Pn
i=1 pi is the total server computing power, and

BCRAC =
Pm
k=1 ck is the total cooling power. The budgeting has

to be done in a self-consistent way, where cooling power is able to
extract the heat generated from the servers.

Motivation. If the workloads on all servers are identical then the
budgeting problem is trivial since the total power can be divided
uniformly among all servers. To get a better understanding of the
relationship between throughput and the allocated power cap in
case of heterogeneous workloads, we equip our experimental server
with a power capping controller. The capping controller executes
once every second and adjusts the p-state of the server using DVFS
based on the difference between the allocated power cap and actual
power consumption [10]. We report the average throughput as a
function of the power cap for four identical servers with different
workload sets in Figure 1, where each server is executing a hetero-
geneous workload mix from the SPEC CPU06 benchmarks. The
plot leads to a number of observations.

1. The observed throughput is highly dependent on the work-
load characteristics. Servers A and B show large improve-
ment in throughput with increased power allocations. Server
D shows modest improvements, while server C shows little
or no improvements. Thus, some servers will not be able to
leverage their allocated power caps to improve throughput.

2. The plot shows that the slope of an individual server plot
changes as a function of the operating power cap. For in-
stance, Server A shows a larger slope in the range of 140-150
W compared to other regions of operation. Thus, accurate
modeling requires considering the impact of the operational
power cap of the server on its slope.

3. The plots of servers C and D show that greedy allocation
methods based on the throughput/Watt alone (e.g., [13]) will
not give optimal results. For example, if the current power al-
locations for servers C and D are at the lowest cap, then Fig-
ure 1 shows that server C has higher throughout than server
D, which can lead to the wrong conclusion that it is better
to allocate more power to Server C. However, the plots of
the two servers eventually cross over, where server D attains
large throughput than server C at higher power caps.

Our power budgeting approach consists of two components: (i)
a total power budgeting method that partitions the total power bud-
get, B, into the computing budget, Bs, and the cooling budget,
BCRAC , in a self-consistent way; and (ii) an optimal computing
power budgeting method that identifies the power cap for each
server, such that the total computing power budget, Bs is met and



the total throughput is maximized. Our optimal computing power
budgeter makes use of a novel throughput predictor that takes as
inputs the measurements, e.g., throughput, power and performance
counters, of servers at the current power cap, and uses them to
predict the change in throughput of each server for every possi-
ble power cap. We describe each of these components in the next
subsections.

3.1 Total power budgeting
Our goal is to apply a total power budget for both computing

power and cooling power in a self-consistent way, where the cool-
ing power, BCRAC =

Pm
k=1 ck, extracts the heat generated from

the computing power. The cooling power is a function of many
factors, including the layout of the data center, the spatial alloca-
tion of the computing power, the air flow rate, and the efficiency of
the CRAC units. The power consumption, ck, of a CRAC unit k is
equal to

ck =

P
i pi

CoP
, (1)

where
P
i pi is the power consumption of servers with their heat

flow directed towards the CRAC unit, and CoP is the coefficient
of performance that gives the performance of the CRAC units [12].
For example, based on physical measurements, an empirical model
for CoP of a commercial water-chilled CRAC unit is equal to

CoP (t) = 0.0068t2 + 0.0008t+ 0.458, (2)

where t is the supply air temperature of the CRAC unit in degrees
Celsius [12]. To find the minimum sufficient cooling power for an
allocation of a certain computing power, it is necessary to max-
imize the supply air temperature t, while ensuring that the inlet
temperatures of all the servers will not exceed the manufacturer’s
redline temperature Tred. Identifying the inlet temperature for the
servers requires accurate CFD models for the air flow and the heat
transfer dynamics inside the data center. If the results of the CFD
simulation show that the inlet temperature of any server violates
Tred, then t should be lowered to bring the inlet temperature back
under Tred, and if the inlet temperature has not reached Tred, then
t should be increased without causing an inlet temperature of racks
increase beyond Tred. Given a spatial layout of computing power
consumption inside the data center, Equation (1) and Equation (2)
and the associated CFD simulations enable us to compute the re-
quired cooling power BCRAC =

P
k ck.

To ensure that the sum of the computing power,Bs, and the cool-
ing power, BCRAC , meets the total power budget B, we propose
an algorithm, given in Figure 2, to identify a self-consistent parti-
tioning of the total power budget. The main loop of the iterative
algorithm first calculates the computing power budgetBs in step 3,

Procedure: Self-Consistent power budgeting algorithm
Input: Total power budget B; data center configuration; Tred.
Output: Computing power Bs and cooling power BCRAC .

1. initialize BCRAC based on initial CFD simulation.

2. repeat:

3. let Bs = B −BCRAC .

4. budget Bs using the multi-choice knapsack algorithm.

5. run CFD simulations to get minimum BCRAC given Tred.

6. until BCRAC is equal to B −Bs.

Figure 2: Algorithm for self-consistent total power budgeting.

and then in Step 4, the computing budget,Bs, is allocated optimally
among the servers using the multi-choice knapsack algorithm de-
scribed in the next subsection. Given power allocation and the data
center configuration, Step 5 estimates the minimum required cool-
ing power, BCRAC , as described in the previous paragraph. If it
happens that BCRAC + Bs = B (step 6), then the algorithm has
converged to a solution; otherwise, it continues iterating. The pro-
posed algorithm is guaranteed to converge; proof is available in the
supplemental material.

3.2 Computing Power Budgeting
Our goal is to maximize the total throughput under a total com-

puting power budget Bs. We consider a discrete set of individual
server power caps with a fixed increment (e.g., 130 W, 135 W, . . .,
165 W). The choice of a discrete number of power caps is natural
given that p-states are discrete and changing them does not lead to
a continuous power range. Thus, the power cap of a server can be
described as

pi = p0 +

rX
j=1

wjxij , (3)

where p0 is the least possible power cap, r is the number of individ-
ual server power caps, wj is the increment power for each cap over
the least possible cap, and xij ∈ {0, 1}, where xij is only equal to
1 when server i is assigned a power cap equal to p0 + wj . For the
case of power caps: 130 W, 135 W, . . ., 165 W, we have r = 8,
p0 = 130W and w1 = 0, w2 = 5, w3 = 10, . . ., w8 = 35.

A challenging aspect is that we need to estimate the impact of a
change in power cap on the throughput of a server. We propose the
following throughout predictor. Suppose that p̂i denotes current
allocated power cap to server i, and that the attained throughput for
the server from using the power cap controller is equal to τi(p̂i).
Given the measurements at the current power cap, the objective of
the throughput predictor is to estimate the throughput of the server
resulting from allocating a new power cap pi to the server. We
propose a piecewise linear model, where the predicted throughput
is equal to,

τi(pi) = τi(p̂i) + si(p̂i)(pi − p̂i), (4)

where si(p̂i) is the slope of the throughput-power plot of server i at
the server’s current power cap. To predict the throughput, we need
to identify the slope from the observations at the current operating
point. To get an insight into the factors that determine the slope of
the throughput-power characteristics, we analyzed a large number
of performance counters from off-line characterization data. We
have found that the Last Level Cache (LLC) misses is one of the
most reliable predictor of the slope. Figure 3 illustrates the rela-
tionship between the slope and LLC using a large volume of char-
acterization data collected from the SPEC CPU 2006 benchmarks.
The results show a trend where workloads with larger LLC suf-
fer throughput degradation. This trend is plausible as LLC misses
show memory boundedness [2, 6], and as a result allocating more
power caps to memory bound workloads give little improvements
to throughput. In addition to the LLC misses, we have found that
the ratio, i.e., τi(p̂i)/p̂i, is a good predictor of the slope at the set-
ting. Figure 4 illustrates the relationship between the two using our
off-line characterization data. The results show that servers with
higher throughput per Watt usually have higher slopes.

Our slope estimator makes uses of both τi(p̂i)/p̂i and ˆLLCi.
We experimented with a number of models for the slope, and we
found the following model to give the best results:

si = α1 + α2
τi(p̂i)

p̂i
+ α3e

α4· ˆLLCi , (5)
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Figure 4: Relationship between current throughput/Watt and
the slope for a large number of heterogeneous workload sets.

where α1, . . . , α4 are the model coefficients for the current power
cap. The coefficients can be easily found through off-line training
on subset of workload characterization data.

Using Equations (3) and (4), and given the current τi(p̂i) and
p̂i, it can be shown (see supplemental material) that the throughput
objective can be recast as follows:

max

nX
i=1

τi(pi) ⇔ max

nX
i=1

rX
j=1

vijxij , (6)

where vij = siwj . Thus, the entire optimization formulation is
given by

maximize
Pn
i=1

Pr
j=1 vijxij

subject to
Pn
i=1

Pr
j=1 wjxij ≤ Bs − np0,Pr

j=1 xij = 1 ∀i = {1 . . . n},

xij ∈ {0, 1}.

We observe the similarity between power budgeting formulation
and the multiple-choice knapsack problem [15]. In the multiple-
choice knapsack problem, there are a number of classes, where
each class has a few items, each with its own value and weight, and
we have to select one item from each class to maximize the total
value for the given total weight of the knapsack. Our problem nat-
urally leads to a multiple-choice formulation, where the each server
corresponds to a class, and the items within the class correspond to
the power cap settings that can be applied to the server, each with its
own throughput value (vijxij) and weight (power cap wjxij). The
multiple-choice knapsack problem is readily solved using dynamic
programming. The supplemental material provides the details of
the dynamic programming algorithm, which has a complexity of
O(nrBs). In a computing cluster with hundreds or thousands of
servers, it is easy to envision a server dedicated to carrying out the
computations necessary for power budgeting.

4. EXPERIMENTAL RESULTS
In our data center configuration, we assume 320 servers forming

8 U40 racks with 40 servers per rack. To simulate the heat flow and
air flow in the data center, we use TileFlow [20], which is a CFD
software tool for simulating cooling characteristics of data cen-
ters. We provide the center’s layout details in Experiment 3. The
throughput and power estimates for the servers are derived from
measurements on a real server executing heterogeneous workload
sets. The Linux-based server has a quad-core Intel Core i7 proces-
sor and 8 GB of memory. To measure power consumption, the 120
V AC power lines to the server are intercepted and the electric cur-
rent is measuring using an Agilent 34410A digital multimeter. The
total power measurements are read back to the server over USB
using the SCPI interface and provided as inputs to the power cap
controller. The engagement period of the feedback power cap con-
troller is 1 second.

We use the experimental server to construct a database of 320
execution traces of workload sets selected from the SPEC CPU06
[19] and PARSEC benchmarks [4]. For the SPEC CPU06 bench-
marks, each workload set consists of four randomly chosen bench-
marks, so that all the cores of our server are fully utilized. For the
PARSEC benchmarks, all workloads are executed with four-thread
configuration. We measured the number of retired instructions per
second and LLC misses using the pfmon tool library interface.
To train our predictor, we collected a large volume of characteri-
zation, where the throughput and LLC are measured for different
workloads under different power caps. The database enables us to
simulate the impact of different power budgets on a large number
of servers in an extremely fast way that preserves the accuracy of
results. In particular, each time a new power budget is applied, the
power and performance outcomes are computed by reassembling
the proper sections of the workload set traces of different servers
from the database.

Exp 1. Throughput Predictor Accuracy. In the first experi-
ment, we evaluate the accuracy of our throughput predictor com-
pared to the actual throughput results. We compare our predic-
tor in three versions: (i) predictor which uses the measure-
ments of throughput, power and LLC as described in Subsection
3.2; (ii) predictor-LLC that just uses LLC measurements, and
(iii) predictor-TP just uses the throughput and power. We
also compare against the linear (previous-linear) model [17,
8] and cubic (previous-cubic) model proposed in previous
works [8]. The average absolute error of the predictors are re-
ported in Table 1. The results show that our predictor leads to better
throughput prediction, and that combining LLC measurements to-
gether with throughput and power leads to more accurate results.
Both linear and cubic models previously proposed in the literature
trail our models in accuracy.

Exp 2. Computing Power Budgets. In the second experiment, we
evaluate the effectiveness of the proposed knapsack-based optimal

prediction throughput
method prediction error

predictor 3.57%
predictor-LLC 7.83%
predictor-TP 4.89%
previous-linear [17, 8] 15.94%
previous-cubic [8] 8.16%

Table 1: Error in throughput prediction for various models.
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Figure 5: Throughput improvement over baseline uniform
power allocation for heterogeneous workloads across servers,
homogenous within server.
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Figure 6: Throughput improvement over baseline uniform
power allocation for heterogeneous workloads across servers,
heterogeneous within server.

power budgeting method given a total computing power budget.
We do not consider the cooling power consumption in this exper-
iment. We refer to our technique by predictor+knapsack.
We report the improvement in throughput over a baseline method
(uniform), where the budget is allocated uniformly among the
servers. We also compare against a previously proposed approach
(previous-greedy) [17], which utilizes a greedy approach for
power budgeting, where servers with higher throughput per Watt
at the moment of re-calculating the power budget are allocated
more power. Finally, we compute an upper bound on the attainable
throughput by using the optimal knapsack algorithm on the true
throughput and power for each server at the power cap, which are
not known during runtime, but can be computed in our simulation
environment. We refer to this method by oracle+knapsack.
We consider two cases:

a) Heterogeneous across servers, homogenous within server: In the
first case, the servers execute different workload sets, but the work-
load set assigned for each server is homogenous, e.g., a PARSEC
workload with four threads or four instances of the same SPEC
CPU06 benchmark. This is the most common case in modern clus-
ters as administrators prefer to eliminate the interference between
workloads arising from execution on the same server. The results
are given in Figure 5 for a number of total computing power bud-
gets. The results demonstrate that our predictor+knapsack
method consistently outperforms other methods. For the case of
48 KW, we increase the throughput by 7.56% compared to uniform
allocation case, whereas the previous-greedymethod only in-
creases the throughput by 5.98%. The results from our predictive
method are close to the results from the oracle case.

b) Heterogeneous across servers, heterogeneous within server: In
the second case, the servers execute different workload sets, and
each workload set on a server consists of different benchmarks
(e.g., four instances of different SPEC CPU06 applications). The

Figure 7: The inlet temperatures of racks and the spatial tem-
perature maps in Fahrenheit.

results are given in Figure 6 for five total computing power budgets.
The results show that our proposed method consistently outper-
forms other methods. For example, for total budget of 49.6 KW, our
method increases throughput by 7.02% over uniform, whereas
the previously proposed greedy method increases throughput by
6.12%. The relative improvements in this case are less than the
first case, which is expected given the heterogeneity of workloads
within the server. This heterogeneity causes averaging in charac-
teristics, which leads to less differentiation among the ensemble
of servers. Furthermore, the interactions between the workloads
within the servers reduce the accuracy of the throughput predictor.
Therefore, there might be further room for improvement through
better throughput predictors.

In both cases, it is natural to expect that the relative advantages
among the methods would disappear when the total power budget
is too high or too low. If the total budget is too high, then all servers
can afford to run at the highest power cap and throughout irrespec-
tive of the method, and similarly when the total budget is too low,
then all servers will be forced to the lowest power state.

Exp 3. Total Power (Computing+Cooling) Budgeting. Our first
three experiments assume that the power budget is entirely applied
to the computing servers. In the fourth experiment, we include
cooling power into our method and calculate the optimal partition
between cooling power and computing power of a given total power
budget. In our data center configuration, the 8 racks are arranged
into two symmetric rows at the center of the room as illustrated in
Figure 7. Two down flow CRAC units are located at two sides of
the center. Cold air comes from under floor through perforated tiles
between the two front side rack rows. The fans integrated with the
racks draw the cold air through servers, which removes the heat
generated by the operation of servers. The air heated by servers
leaves the racks from the back side and is sucked into the CRAC
units at the sides. The CRAC units extract the heat from the hot
air and push cold air back into data center from perforated tiles on
the floor at user specified temperature. We assume a redline inlet
temperature of racks is 24 ◦C.

We consider five total power budgets 62 KW, 66 KW, 70 KW,
74 KW and 78KW. We execute the self-consistent budgeting algo-
rithm of Figure 2 to find the optimal partition of total power budget
between computing power and cooling power under several total
power budgets. After each simulation, TileFlow returns a report
about the estimated maximum inlet temperature of racks. We can
check the temperature at any specific point by the temperature map-
ping tool in Figure 7. The partitioning of the total power into its
computing and cooling components is given in Figure 8. From Fig-
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Figure 8: The breakup of cooling power and computing power
under different total power budgets.

44 45 46 47 48 49 50
20

21

22

23

24

25

26

total computing power (KW)

to
ta

l c
oo

lin
g 

po
w

er
 (K

W
)

steps 4−5steps 4−5steps 4−5steps 4−5
step 3

step 3

step 3

step 3

Figure 9: Illustration of the self-consistent power budgeting of
the algorithm in Figure 2 for the case of 70 KW.

ure 8, we can observe that the cooling power consumption typically
takes 30% − 35% of total power consumption. Another interest-
ing observation from the results in Figure 8 is that the proportion
of cooling power increases with the increase in total power budget,
and that the rate of this increment also increases. Figure 9 illus-
trates the application of the self-consistent budgeting algorithm of
Figure 2 to the case of 70 KW total power budget. The dashed
blue line gives the power partitions that sum to 70 KW, and the red
points give the intermediate partitions before convergence. The al-
gorithm requires only 5 iterations to converge to a self-consistent
solution.

5. CONCLUSIONS & FUTURE WORK
In this work we considered the problem of optimal power bud-

geting for servers with heterogeneous workloads. It is well-known
that workloads exhibit different power and performance character-
istics depending on their memory or processor boundedness. We
leveraged this observation to devise a power budgeting method that
allocates power to servers that can efficiently translate their power
allocation to increases in throughput. During runtime, a power bud-
geting system has only one snapshot of the servers’ status based on
their current measurements. Thus, we devised a throughput predic-
tion method that estimates the changes in throughput as functions
of potential changes to allocated power caps. We have demon-
strated that our throughput predictor is capable of providing ac-
curate predictions under different power cap and workload char-
acteristics. We have devised an optimal computing power budget-
ing method based on the multiple-choice knapsack formulation to
identify the optimal power allocations for each server such that the
total throughput is maximized. Furthermore, we proposed a self-
consistent method to partition the total power budget between the
computing and the cooling component of the data center. Our re-
sults show good improvements over previous methods.

Future work. Our future work will consider the possibility of
under-utilized servers and use of other Quality of Service (QoS)
metrics besides the total throughput and average response time [3].
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7. SUPPLEMENTAL MATERIAL

7.1 Dynamic Programming Algorithm for Com-
puting Power Budgeting

Using Equations (3) and (4), and using the fact that τi(p̂i) and p̂i
are given inputs, we can re-cast the throughput objective as follows:

max

nX
i=1

τi(pi) ⇔ max

nX
i=1

(τi(p̂i) + si(pi − p̂i))

⇔ max

nX
i=1

si

rX
j=1

wjxij

⇔ max

nX
i=1

rX
j=1

vijxij , (7)

where vij = siwj . Thus, the entire optimization formulation is
given by

maximize
Pn
i=1

Pr
j=1 vijxij

subject to
Pn
i=1

Pr
j=1 wjxij ≤ Bs − np0,Pr

j=1 xij = 1 ∀i = {1 . . . n},

xij ∈ {0, 1}.

We observe the similarity between power budgeting formulation
and the multiple-choice knapsack problem [15]. In the multiple-
choice knapsack problem, there are a number of classes, where
each class has a few items, each with its own value and weight,
and we have to select one item from each class to maximize the
total value with the knapsack total weight. Our problem naturally
leads to a multiple-choice formulation, where the each server cor-
responds to a class, and the items within the class correspond to the
power cap settings that can be applied to the server, each with its
own throughput value (vijxij) and weight (power cap wjxij). The
standard dynamic programming given in Figure 10 can be used to
solve the problem optimally. It has a complexity of O(nrBs).

Procedure: Optimal computing power budgeting algorithm.
Input: values and weights for the servers, n, and Bs.
Output: Power allocated for every server.

Let V be a vector that holds the total knapsack’s value for each
possible budget. V is initialized to all zero.

for i := 1 : n

for k := Bs : −1 : 1

for j := 1 : r

pi := p0 + wj

if k ≥ pi and V (k) ≤ vij + V (k − pi)

let V (k) = vij + V (k − pi)

let xij = 1 and let xil = 0 for all l 6= j

Figure 10: Algorithm for optimal power budgeting.

7.2 Proof of Convergence of the Self-Consistent
Power Budgeting Algorithm

In this subsection, we will prove the convergence of the self-
consistent power budgeting algorithm given in Figure 2 of Subsec-
tion 3.1. Let (B∗s , B

∗
CRAC) denote the self-consistent solution of

a total power budget B∗s + B∗CRAC = B at a maximum CRAC
supply temperature of t∗. Let the computing power at iteration k
of the algorithm is denoted by Bs(k), and the minimum cooling
power required for heat extraction is BCRAC(k) at a maximum
CRAC supply temperature of tk. Define δp(k) = |Bs(k) − B∗s |
and δc(k) = |BCRAC(k)−B∗CRAC |.

When Bs(k) > B∗s , the CRAC unit’s supply temperature, tk,
is higher than t∗. According to the CRAC model of Equation (2),
CoP (tk) > CoP (t∗), which will also hold true for any monotoni-
cally increasing CRAC model as a function of temperature. We can
derive the following relationship between δp(k) and δc(k):

δp(k) = |Bs(k)−B∗s |
δp(k)

CoP (tk)
= | Bs(k)

CoP (tk)
− B∗s
CoP (tk)

|

> | Bs(k)
CoP (tk)

− B∗s
CoP (t∗)

|

> |BCRAC(k)−B∗CRAC |
> δc(k).

With a CoP with a numerical value greater than 1, as expected
from Equation (2), we conclude that

δp(k) > δc(k). (8)

A similar argument can be made for the case of Bs(k) < B∗s .
For iteration k + 1, our method will update the computing power
as:

Bs(k + 1) = B −BCRAC(k)

= B∗s +B∗CRAC −BCRAC(k),

which can be re-arranged to

Bs(k + 1)−B∗s = B∗CRAC −BCRAC(k)

|Bs(k + 1)−B∗s | = |B∗CRAC −BCRAC(k)|
δp(k + 1) = δc(k)

δp(k + 1) < δp(k).

Thus, the distance, δp(k+1), betweenBs(k+1) andB∗s is less
than the distance, δp(k), between Bs(k) and B∗s . Therefore, the
computing power approaches B∗s with every iteration and finally
converges to B∗s .


