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Abstract—We propose new techniques for post-silicon power
mapping and modeling of multi-core processors using infrared
imaging and performance counter measurements. An accurate
finite-element modeling framework is used to capture the re-
lationship between temperature and power, while compensating
for the artifacts introduced from substituting traditional heat
removal mechanisms with oil-based infrared-transparent cooling
mechanisms. We use thermal conditioning techniques to build
leakage power models for the die. Utilizing the power maps iden-
tified from infrared mapping, we develop empirical power models
for different processor blocks based on the measurements from
the performance monitoring counters (PMCs), and utilize the
PMC-based models to analyze the transient power consumption.
In our experiments, we capture thermal images from a quad-
core processor under different workload conditions, and then we
reconstruct the dynamic and leakage power maps for different
blocks. Our results show good accuracy in mapping and modeling,
revealing good insights into the trends of power consumption in
multi-core processors.

I. INTRODUCTION

Power is a major design challenge due to the highly-
complex nature of modern chips. This complexity makes
accurate pre-silicon power modeling a very difficult task [3],
[12]. Furthermore, workloads and process variability alter
the power consumption during runtime, making it harder to
accurately estimate power consumption during design time.
In recent years, post-silicon power mapping has emerged as
a technique to mitigate the uncertainties in design-time power
models and enable effective post-silicon power characterization
[5], [11], [13], [4]. Many of these techniques rely on inverting
the thermal emissions captured from an operational chip into
a power map. This highly-versatile approach faces numerous
challenges, including the need for accurate thermal to power
modeling; the need to remove artifacts introduced by the
infrared experimental setup; and variabilities introduced by
leakage power.

In this paper we propose a complete framework for post-
silicon power mapping and modeling that solves many of the
open challenges in this area. Our framework is capable of
identifying the dynamic and leakage power per-block of multi-
core processors under different workloads, while simultane-
ously analyzing the impact of process variability on leakage
and capturing the relationship between the performance mon-
itoring counters (PMCs) and per-block power consumption.
Our method can be used to validate and calibrate design-time
power and thermal models. The contribution of this paper are
as follows.

1) We propose a numerical technique that uses accurate
finite-element modeling (FEM) to translate the mea-
sured thermal maps captured from infrared-transparent
heat sink systems to corresponding thermal maps of
traditional metal and fan sinks, and then inverts the
translated thermal maps to power maps. The proposed
technique compensates for the thermal artifacts intro-
duced by oil-based setup and can substitute for ex-
perimental techniques to match thermal behavior of
different sinks [10].

2) We use thermal conditioning to devise spatial leakage
variability models. The leakage models enable us to
decompose the per-block power consumption into its
dynamic and leakage components. Once estimated for
a given chip, these leakage models can be used to com-
pute leakage power map for any workload readily from
its thermal-map alone, hence simplifying the overall
power-mapping process.

3) We collect PMC values while simultaneously perform-
ing infrared-based power mapping. The PMC values are
correlated with the power maps to identify the PMCs
that are directly responsible for the power consumption
of each block. Unlike previous works, [12], [2], [1]
which had no access to the actual per-block power
consumption, we develop per-block mathematical mod-
els by relating the measured PMCs to the per-block
power consumption as calculated by the infrared power
mapping framework. We use the PMC-based models
to analyze the transient power consumption of each
processor block.

4) We apply our proposed framework on a real quad-
core processor to get detailed dynamic and leakage
powers for different blocks (e.g. cores, L2-caches, etc.)
while executing workloads using multiple SPEC 2006
benchmarks. Proposed PMC-based models are used
to estimate power dissipation in each blocks of the
processor. Our results provide useful insights into the
distribution of power in multi-core processors.

The organization of the paper is as follows. Section
II describes the proposed framework for post-silicon power
mapping and modeling. Section III describes techniques for
leakage power mapping using thermal conditioning. We devise
in Section IV empirical models that relate the per-block power
consumption to the measurements of PMCs. We provide an
extensive set of experimental results in Section V. Finally,
Section VI summarizes the main conclusions of this work.
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Fig. 1. Power mapping framework.

II. POWER MAPPING FRAMEWORK

Figure 1 illustrates the proposed power mapping frame-
work. In our setup, the processor’s regular fan and metal heat
spreader are removed and replaced by an infrared-transparent
heat sink with silicon windows. Laminar mineral oil flow is
pumped through the heat sink on top of the processor’s die
with high flow rate to remove its heat [5], [11], [14]. During
runtime, realistic workloads are applied to the processor and
the steady-state or averaged thermal map is captured with the
infrared camera. We will use toil to denote the vector that
corresponds to the captured thermal map of the processor.

Replacing the fan and metal heat spreader with an oil-
based infrared transparent heat sink changes the thermal map
of the die [6]. The changes in the thermal map have negligible
impact on dynamic power, but they change the leakage power
characteristics. Previous approaches attempted to compensate
for this effect by altering the design of the infrared-transparent
sink until the measurements from the processor’s internal
sensors matched the measurements from the sensors when the
regular metal heat sink is applied [10]. Moreover, it is still
required to compensate for the directional effect due to the oil
flow; a simple linear compensation technique, as used in [10],
would not work well for the application-dependent temperature
profiles of real processors. Therefore, instead of experimental
approach, we apply a numerical approach that translates toil to
the thermal map, tcu, that would have resulted if the regular
fan and copper (Cu) heat spreader were applied. Our easier
accurate approach eliminates the need for any experimental
modifications.

For power mapping, it is necessary to have an accu-
rate modeling matrix R that relates temperature to power
at the steady state. This modeling matrix can be estimated
experimentally [5], [4] or numerically using FEM methods
[8]. We propose to use FEM methods to accurately estimate
two modeling matrices (only one time effort per processor
design): Roil for the case of the oil-based heat sink, and Rcu

for the case of traditional heat spreader and fan-based heat
sink. We use the FEM tool COMSOL to capture the exact
models, encompassing all physical factors such as, cooling
fluid temperature, fluid flow rate, heat transfer coefficients,
and chip geometry. Generating Roil matrix takes longer time
(about 2.5 hours on our desktop computer having Intel i7 CPU
running at 2.8GHz and with 8GB memory) than generating
Rcu matrix (less than 10 minutes); this is because for the
oil-based system, we need to simulate both fluid-flow and
heat-transfer physics simultaneously, while for the Cu-based

system, we just need to simulate the heat-transfer physics. To
verify the accuracy of Roil, we applied a known power map
pk and verified that the numerical results Roilpk match the
infrared-based thermal image. To verify the accuracy of Rcu,
we confirmed the matching between the measurements from
the processor’s thermal sensors to the corresponding elements
in the vector Rcupk when the metal heat spreader is applied.
Previous approaches to model R in simulation were only done
for metal heat spreader with the objective of speeding thermal
simulation runtime, where the model matrix R is used to
substitute lengthy FEM-based thermal simulations [8].

If a power map p is simulated using both FEM models,
then obtain the following two equations:

Roilp = toil ⇒ p = (RT
oilRoil)

−1RT
oiltoil (1)

Rcup = tcu (2)

Substituting Equation (1) into Equation (2), we get

tcu = Rcu

(
RT
oilRoil

)−1
RT
oiltoil (3)

Given toil, Equation (3) provides a means to translate the
oil-based thermal image to a thermal image that would have
resulted from using traditional metal heat spreaders. Our nu-
merical translation method is quite generic and it could be used
to translate thermal maps between any two cooling systems.
The thermal map, tcu, is then numerically inverted to yield the
per-block power maps, where we use the leakage power map as
lower bound constraint. The procedure to estimate the leakage
power map is given in Section III. In particular, we solve
following constrained optimization problem to reconstruct the
power map of the die.

p∗ = argp min ‖Rcu

(
p−

(
RT
oilRoil

)−1
RT
oiltoil

)
‖2 (4)

such that, ∀i : pi ≥ plkg,i

where, p∗ is the reconstructed power-vector, plkg,i denotes
the leakage power in the ith die-block, and pi denotes ith
element of p, i.e., the power in the ith block of the die.
By solving the above optimization problem (used MATLAB
lsqlin function), we obtain the total power of each block for
the die. The dynamic power of each block is readily obtained
by subtracting the leakage power from the reconstructed total
power. Using the pi ≥ plkg,i constraint helps in ensuring that
dynamic power for all blocks is always positive. A total power
constraint could also be added to reduce the reconstruction-
error further [13], [4]. Our power mapping framework provides
the dynamic, leakage, and total powers for each block of a
processor given its thermal map. While we used the proposed
framework for power mapping and modeling of a multi-core
processor, the framework is quite generic and could be applied
on other type of integrated circuits as well. Unless otherwise
stated, we use the translated metal heat spreader based thermal
maps for all our analysis onwards.

III. MAPPING LEAKAGE VARIABILITY

Leakage power, especially its dominant sub-threshold com-
ponent, depends exponentially on temperature. But within the
typical chip operation range 25 - 85 ◦C, it has a quadratic
dependency on temperature, which can be modeled by second-
order Taylor series expansion at a reference temperature. In
order to compute the chip’s spatial leakage power map, we
divide the die area into a grid with large number of locations
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Fig. 2. Measured power vs. average chip temperature, while keeping dynamic
power unchanged. Pdyn denotes the dynamic power and

∑
pref denotes the

total leakage power at reference temperature 27 ◦C.

n. For each location i, we develop a second-order Taylor
expansion model for leakage power, plkg,i, as a function of the
average temperature, ti, of location i. The expansion around a
reference power, pref,i, and temperature, tref,i, is given by

plkg,i = pref,i + α1,i(ti − tref,i) + α2,i(ti − tref,i)2 (5)

where α1,i and α2,i are the model coefficients for location i
that depend on the voltage, process variability, and structure of
devices. The total leakage power, Plkg is the sum of leakage
of the chip’s n locations, which can be written as:

Plkg =

n∑
i

pref,i +

n∑
i=1

[α1,i(ti − tref,i) + α2,i(ti − tref,i)2]

which can be re-arranged as

∆P =
n∑
i=1

α1,i∆ti + α2,i∆t
2
i , (6)

where ∆P = Plkg−
∑
i pref,i and ∆ti = ti− tref,i. Note that

∆P , which is the change in total power, is readily obtained
using an external multimeter that measures the total power of
the processor, and ∆ti is measured using the thermal maps
provided from our infrared imaging or from the translated
thermal maps as described in Section II.

To learn the model coefficients, we repeat the thermal
conditioning experiment m times with different ambient tem-
peratures, and for each experiment, we measure the change in
total power and change in the thermal map. The jth thermal
conditioning experiment provides a thermal image which con-
sists of ∆tj,i at each chip location i and an incremental total
leakage power ∆Pj , which creates an instance of Equation (7).

∆Pj =
n∑
i=1

α1,i∆tj,i + α2,i∆t
2
j,i (7)

The results from the m thermal conditioning experiments
can be assembled into a system of equations as follows ∆t1,1 ∆t21,1 · · · ∆t1,n ∆t21,n

...
...

. . .
...

...
∆tm,1 ∆t2m,1 · · · ∆tm,n ∆t2m,n




α1,1

α2,1

...
α1,n

α2,n

=

[
∆P1

...
∆Pm

]
(8)

We solve the above system of equations using least-square
regression to find the 2n α first-order and second-order model
coefficients. To compute the total reference leakage power,∑n
i pref,i in Equation (6), one can change the ambient tem-

perature of the chip while keeping the dynamic power constant

(by running a stable workload), and measuring the total power
consumption and the average chip temperature simultaneously.
To estimate the total reference leakage power, an exponential
model of the measured power to the chip’s average temperature
can be used to extrapolate it to the point where leakage power
tapers off. As shown in Figure 2, for our experimental quad-
core processor, we estimate the total reference leakage power at
27 ◦C as 1.6 W, and stable dynamic power, Pdyn as 12 W. For
a particular chip, these coefficients need to be computed only
once, and then the same coefficients are used for estimating
fine-resolution leakage maps for any thermal map of the chip
as given in the framework of Figure 1.
Process Variability Mapping. In a typical power mapping
experiment, the temperature of location i is plugged into
Equation (5) to estimate the leakage power of location i. If
it is desired to estimate the inherent spatial leakage variability
arising from process variability, then a fixed temperature could
instead be plugged into the equations of all chip locations. By
using the same temperature everywhere, the leakage variations
that arise will be due to the coefficients α1,i and α2,i which
are dependent on the inherent process variability, assuming a
fixed operating voltage.

IV. POWER MODELING USING PMCS

A popular approach for modeling total power is through the
use of performance monitoring counters (PMCs) [12], [2], [7],
[9], [1]. Performance counters are embedded in the processor
to track the usage of different processor blocks. Examples
of such events include the number of retired instructions, the
number of cache hits, and the number of correctly predicted
branches. In contrast to previous works, where the PMCs are
related and modeled to total chip power or simulated power,
we relate actual power of each circuit block as estimated
through infrared-based mapping to the runtime PMCs. This
gives accurate per-block PMC models and enable us to directly
isolate the PMCs responsible for power consumption for each
block. The PMC based models can be then used to model
the transient power consumption and in situations where no
infrared imaging system is available as in the case of end users.

Our infrared-based power mapping technique directly ob-
tains the power consumption of each circuit block under
different workload conditions. We propose to simultaneously
collect the measurements of the PMCs, while collecting the
infrared imaging data. The post-silicon power estimates are
then used to derive fitted empirical models that relate the
performance counters to the power consumption of each block.
For instance, if m1, m2, and m3 are three PMCs correlated to
the power estimates, pi, of block i, then an empirical model,
p̂i, can be described as p̂i = c0 + c1m1 + c2m2 + c3m3,
where c0, c1, c2 and c3 are the model coefficients, which have
to be determined by fitting the observed power estimates of
each block with the PMC measurements on a training set of
workloads. The fitting is done using least-square estimation,
where it is desired to minimize the modeling error, (p̂i − pi)2

over the training data. The main steps of our power modeling
procedure are summarized in Figure 3.

The fitted PMC models enable us to substitute the post-
silicon power mapping results in situations where infrared
imaging is difficult. These include, for example, systems de-
ployed in user environments where access to infrared imaging
is not easy, or for high-resolution transient power mapping.



Procedure: PMC-based power modeling procedure
Input: Infrared-based power estimates for each block and
associated PMC measurements
Output: Power Models for each block as a function of
PMC measurements

1) For each circuit block i:
a. Identify the PMC measurements that
are strongly correlated or anti
correlated with power estimates of i.
b. Use least-square estimation to fit a
linear model that estimates the power
of i as a function of the
strongly-correlated PMC measurements.

Fig. 3. Algorithm to compute PMC-based models.

Infrared-based transient power mapping is inherently limited
because of the low-pass filtering of power variations and the
limited sampling rate of infrared cameras [13]. PMC-based
modeling circumvents the transient analysis limitations of
infrared imaging. We illustrate the use of PMC-based models
for transient power modeling in Section V.

V. EXPERIMENTAL SETUP AND RESULTS

Our experimental system consists of a motherboard fitted
with a 45 nm AMD Athlon II X4 610e quad-core processor
and 4 GB of memory. The motherboard runs Linux OS
with 2.6.10.8 kernel. The floorplan of the processor with 11
different blocks is shown in Figure 4. We treat each core as one
block, as we could not find public-domain information on the
make-up of blocks within each core. It is worth mentioning that
our proposed technique of power mapping is generic and will
work for any arbitrary layout details we use for reconstructing
power maps. The processor has 4×512 KB L2 caches, but it
lacks a shared L3 cache. The area in the center is occupied
by the northbridge and other miscellaneous components such
as the main clock trunks, the thermal sensor, and the built-
in thermal throttling and power management circuits. The
periphery is composed of the devices for I/O and DDR3
communication. The processor supports four distinct DVFS
settings. Except for the R-matrix verification experiment, we
set the DVFS to 1.7 GHz.

We image the processor using a mid-wave FLIR 5600
camera with 640×512 pixel resolution. We also intercept the
12 V supply lines to the processor and measure the current
through a shunt resistor connected to an external Agilent
34410A digital multimeter, which enables us to log the total
power measurements of the processor. To implement thermal
conditioning in our experimental setup, we use a thermoelectric
device and a fluid monitoring device in line with the oil flow
[14]. By changing the voltage and current of the thermoelectric

core1	
  

L2	
  cache	
  	
  
L2	
  cache	
  	
  

core4	
   core3	
  

core2	
  

L2	
  cache	
  
L2	
  cache	
  

N
or
th
br
id
ge
	
  

DDR3	
  channels	
  

I/
O
	
  

I/
O
	
  

I/O	
  
14 mm 

12
 m

m
 

Fig. 4. Layout of the quad-core AMD Athlon II X4 processor.

memory bound processor bound
Integer point omnetpp hmmer
Floating point soplex gamess

TABLE I. SELECTED SPEC CPU2006 BENCHMARKS.

device, we can either cool or heat the fluid to any desired
temperature. Thus, we setup a feedback control system to
control the fluid temperature to any desired set point.

A. Power Mapping Results
The goal of the first experiment is to demonstrate the

results of power mapping for the processor using different
number of workloads and different workload characteristics.
Our workloads come from widely used SPEC CPU2006
benchmark suite. We selected four benchmark applications,
which cover both integer point and floating point computations
and processor-bound and memory-bound characteristics. These
benchmarks are listed in Table I.

We ran 15 different cases of workload sets. For each ex-
periment, we captured the steady-state thermal image using an
infrared-camera and reconstructed the underlying power maps
from the translated thermal maps to the Cu-based spreader as
proposed in Section II. We decomposed the total power maps
into dynamic and leakage power dissipation of each block
of the processor and analyzed the spatial leakage variability
as described in Section III. For example, the reconstructed
maps for four sample cases are shown in Figure 5. The third
row shows a case, where we ran soplex, gamess, and hmmer
benchmarks on cores 1, 2, and 3 respectively. Second column
shows the equivalent temperature maps for Cu-system for each
workload case. The third column shows the reconstructed
total power dissipation in each block for the four cases. It
is clear from the reconstructed power-maps that they agree
with the intuitive expectation that cores running processor-
bound applications (i.e., hmmer and gamess) are having
higher power consumption than the idle cores or cores running
memory-bound workloads. Similarly, fourth and fifth column
show the per-unit reconstructed dynamic power and leakage
power for four different workloads. The figures also show that
the L2 cache power is mainly dominated by leakage power
with a small amount of dynamic power.

The per-block power results for 15 sample workload cases
are presented in Table II. We also report the total dynamic
power, total leakage power, and the sum of leakage and
dynamic power. The results show that the leakage power is on

 1     3    5 W 0    2    4  W    35     45   C 

c1: hmmer 
c2:     - 
c3:     - 
c4:     - 

c1: hmmer 
c2:     - 
c3: soplex 
c4:     - 

c1: soplex 
c2: gamess 
c3: hmmer 
c4:     - 

c1: soplex 
c2: hmmer 
c3: gamess 
c4: omnetpp 

0.1  0.2  W 

Thermal 
Maps 

Reconst. 
Total power 

Reconst. 
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Reconst. 
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Fig. 5. Thermal maps, reconstructed total-power, dynamic-power and
leakage-power maps.



core 1 core 2 core 3 core 4 Reconstructed total power (W) for each block Total power (W)
core 1 L2-1 core 2 L2-2 core 3 L2-3 core 4 L2-4 I/O N. B. DDR3 dyn lkg dyn+lkg meas

omnetpp - - - 3.61 0.66 1.41 0.38 1.58 0.22 2.07 0.46 0.73 4.21 0.95 14.11 2.18 16.28 16.75
hmmer - - - 5.10 0.68 1.27 0.39 1.47 0.21 1.99 0.46 0.68 4.52 0.76 15.29 2.24 17.53 18.42
soplex - - - 3.69 0.70 1.33 0.39 1.58 0.21 2.06 0.44 0.70 4.30 0.91 14.13 2.18 16.31 17.04
gamess - - - 4.86 0.74 1.27 0.37 1.36 0.22 1.92 0.45 0.67 4.37 0.71 14.72 2.21 16.93 18.16
omnetpp - soplex - 3.50 0.73 1.25 0.48 3.85 0.30 2.28 0.45 0.71 5.25 0.86 17.31 2.36 19.66 19.78
omnetpp - hmmer - 3.61 0.76 1.13 0.52 5.47 0.22 2.28 0.46 0.71 5.71 0.74 19.14 2.46 21.60 21.56
omnetpp - gamess - 3.72 0.77 1.16 0.50 5.22 0.31 2.26 0.47 0.71 5.66 0.73 19.05 2.46 21.51 21.49
hmmer - soplex - 5.30 0.82 1.15 0.50 3.85 0.31 2.32 0.48 0.68 5.76 0.78 19.48 2.48 21.96 21.63
hmmer - gamess - 5.34 0.83 1.03 0.52 5.13 0.32 2.21 0.48 0.68 6.08 0.59 20.66 2.55 23.21 23.24
soplex - gamess - 3.89 0.82 1.16 0.52 5.33 0.31 2.33 0.47 0.71 5.80 0.74 19.59 2.49 22.08 21.85
omnetpp soplex gamess - 3.69 0.86 3.23 0.90 5.58 0.38 2.59 0.50 0.76 6.94 0.71 23.41 2.71 26.12 24.77
omnetpp soplex hmmer - 3.63 0.84 3.10 0.88 5.72 0.29 2.61 0.50 0.76 6.87 0.75 23.24 2.70 25.94 24.59
soplex gamess hmmer - 3.91 0.94 4.71 1.09 5.71 0.31 2.64 0.50 0.71 7.61 0.61 25.90 2.85 28.75 26.89
gamess gamess gamess gamess 5.51 1.26 4.68 1.09 4.94 0.47 6.68 0.71 0.65 9.50 0.48 32.71 3.26 35.97 33.04
soplex hmmer gamess omnetpp 3.81 1.07 4.90 1.03 5.62 0.40 5.03 0.59 0.72 8.67 0.55 29.33 3.06 32.38 29.37

TABLE II. POWER-MAPPING RESULTS FOR 15 TEST CASES. N.B.: NORTH BRIDGE BLOCK; DYN: DYNAMIC POWER; LKG: LEAKAGE POWER; DYN+LKG:
THE TOTAL POWER OF THE RECONSTRUCTED POWER MAP; MEAS: THE TOTAL POWER MEASURED THROUGH THE EXTERNAL DIGITAL MULTIMETER.

the average about 11% of the total power. We also report in
the last column the total measured power through the external
multimeter after compensating for the total leakage difference
between the oil-based sink and the Cu-based sink. We notice
that our total estimated power through infrared-based mapping
achieve very close results with an average absolute error of
0.97 W of the measured power. The differences could be
either due to modeling inaccuracies or due to the fact that the
measured total power also include the power consumed by the
off-chip voltage regulators, and thus, it does not represent the
net power consumed by the processor. We have also considered
including the total measured power as a constraint to the
optimization formulation given in Section II; however, the
resultant power maps had some counter-intuitive results.

B. Leakage Modeling Results
To estimate the leakage profile for the AMD quad-core

processor, we perform the thermal conditioning techniques
described in Section III, where we increase the chip tem-
perature from 27 °C to 55 °C by increasing the infrared
transparent cooling fluid temperature from 18 °C to 45 °C,
and measuring the associated changes in power consumption
and thermal profiles of the chip using infrared imaging. We
divide our chip into small blocks of size about 0.4 mm2

resulting into approximately 418 first-order and 418 second-
order coefficients. In order to maintain the stability of the least
square estimation, the maximum number of coefficients i.e. the
leakage power resolution is limited by the available number of
instances of Equation (7). We collected approximately 2000
data points to solve our least square estimation. The total
reference leakage power,

∑
pref in Equation (6) is estimated

by changing the die ambient temperature as shown earlier in
Figure 2, and using the procedure described in Section III.

To uncover the underlying leakage spatial-variability intro-
duced by process variability, we assume constant temperature
across the die, and measure the leakage power for each grid

(b) 

Cores  
38% 

Caches  
19% 

IO 
15% 

NB 
12% 

DDR 
16% 

(a) 

Core1  
27% 

Core4  
25% 

Core3  
22% 

Core2  
26% 

Fig. 6. a) Percentage Leakage power per core with its L2 cache, and b)
Percentage Leakage power per block type.

location. Figure 6.a shows the percentage of leakage power
for each core with its L2-cache. Core 1 has approximately
5% more leakage than the lowest power core. This result for
instance can be used to bias the operating system scheduler
to allocate applications on the lower-leakage cores before the
higher-leakage cores. Figure 6.b gives the total leakage power
distribution among different blocks. There is approximately
10.3% within-die variations among all the blocks.

C. PMC-based Power Modeling
In our third experiment we seek to create empirical models

that relate the performance monitoring counters (PMC) to the
post-silicon power consumption of each block in the quad-core
processor as described in Section IV. We have collected the
measurements of 11 PMCs, which cover activities in different
components, for our quad-core processor using pfmon tool.
These 11 PMCs are listed in Figure 7. We computed the
correlation coefficient between the measurements of the perfor-
mance counters and mapped power consumption of each block,
and we report in Figure 7 all the PMCs that have strong to good
correlation or anti-correlation with power consumption. For
example, the number of retired µops (PMC #3), the data cache
access (PMC #4), the retired branch instructions (PMC #11),
the floating point instructions (PMC #2) all provide strong
correlation to the power consumption of cores. In case of I/O
and DDR channels, the L2 cache misses (PMC #5) provide
a strong correlation of power consumption, while PMC #2,
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Fig. 7. Correlation between performance counters and power consumption
of processor blocks.
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Fig. 8. Power consumption as estimated by the infrared-based system and
the fitted models using the performance counters for the 15 test cases.

#11, #3, #4 provide strong anti correlation. Notice that these
performance counters are strongly correlated with the power
consumption of the caches and cores. That is, when the cores
and caches are experiencing high activity, the I/O and DDR
channels will experience low activity and vice versa.

Using the PMC measurements and their correlations with
the post-silicon power mapping results, we empirically fit a
power model for each processor block to its estimated power
using least-square estimation as described in Section IV. The
inputs to the power models are the most correlated PMCs as
described in the previous paragraph. For instance, we report
in Figure 8 the power consumption of Core 1 as estimated
by infrared mapping and the fitted PMC models. We notice
that the PMC-based fitted models for Core 1 track the power
mapping results closely, with a mean absolute error of 2.4%.

To illustrate the use of PMC in transient power modeling,
we utilize the derived PMC models to estimate the transient
power consumption of different blocks of the processor. Figure
9 gives the power consumption of case 14 for the first 120
seconds in execution. We report in blue solid line the sum
of power of all cores, the dashed blue line gives the power
consumption of the northbridge, while the brown and dashed
green lines give the power of IO and L2 caches respectively.
Finally, the red line gives the total modeled power and the
black line gives the total power form the external multimeter.
We note that the PMC-based modeling is able to track the
transient response accurately, following the changes in total
power consumption.

VI. CONCLUSIONS

In this work, we have introduced multiple novel techniques
that advance the state-of-the-art post-silicon power mapping
and modeling. We have devised accurate finite-element models
that relate power consumption to temperatures, while compen-
sating for the artifacts introduced by using infrared-transparent
heat removal techniques. A generic numerical technique is
proposed to accurately translate thermal maps from one heat
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Fig. 9. Transient power modeling using PMC measurements.

sink system to another heat sink system. We have proposed
techniques to model leakage power through the use of thermal
conditioning. These leakage power models were used to yield
fine-resolution leakage power maps and within-die variability
trends for multi-core processors. We also devised accurate
empirical models that estimate the infrared-based per-block
power maps using the PMC measurements. We have used
the PMC models to accurately estimate the transient power
consumption of different processor blocks. We analyzed the
power consumption of different blocks of a quad-core pro-
cessors under different workload scenarios from the SPEC
CPU2006 benchmarks. Our results reveal a number of insights
into the make-up and scalability of power consumption in
modern processors. As a future work, we are planning to
leverage our post-silicon results to improve the accuracy of
different design-time thermal and power modeling tools.
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