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Abstract—In this paper, we show that the impact of process1

variations on the parametric measurements of semiconductor2

circuits can be modeled using multivariate statistical techniques.3

We show that it is possible to devise data transformation4

methods to model different kinds of measurements such as5

timing and leakage using multivariate statistical analysis. We use6

these models to propose new semiconductor spatial estimation7

and variability decomposition techniques. We demonstrate a8

new semiconductor spatial estimation technique based on the9

expectation-maximization algorithm. Our technique can be used10

to fill in the expected values of measurements at wafer locations11

that have been skipped or missed during parametric testing.12

Furthermore, we use our proposed spatial estimation method13

together with nested analysis of variance techniques to arrive to14

an accurate variability decomposition method. We extensively15

verify our models and results with timing and leakage vari-16

ability data measurements collected from a large volume of17

manufactured wafers at 65 nm SOI process. Using this data18

we explore and quantify the trade-off between the accuracy19

of estimations and the reductions in the number of required20

parametric measurements. We demonstrate the superiority of21

the proposed technique for spatial estimation in comparison22

to geostatistical Kriging-based estimators and traditional cubic23

b-spline-based interpolation methods. We also show the impact of24

wafer sampling techniques on the accuracy of spatial estimation,25

and we reveal the spatial structure of various variability sources.26

Index Terms—Analysis, characterization, modeling, variability.27

I. Introduction28

AGGRESSIVE technology scaling has led to large levels29

of manufacturing process variations due to statistical30

fluctuations inherent in the manufacturing process. Manifes-31

tations of these variations include gate length variations, line32

edge roughness, dopant fluctuations, and variations in the33

dimensions of interconnects [2], [22], [27]. These variations34
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impact the key electrical parameters of semiconductor devices 35

and interconnects, and correspondingly determine their metrics 36

like performance, power, yield, and reliability [4], [5], [22], 37

[26]. For example, at the time of writing this paper, the 38

price difference between the fastest and slowest versions of 39

a popular 45 nm quad-core processor is more than $700. Ex- 40

trapolatary studies predict that the sources and magnitudes of 41

process variabilities will further increase in future technology 42

nodes [3], [8], [14], [20]. 43

Differences in manufacturing outcomes can be attributed 44

to systematic and random variability sources [2]. Systematic 45

sources impact different die or wafers in a deterministic 46

manner, while random variations are unique to each die or 47

wafer or lot. Random variability can be decomposed into 48

different components that reflect the hierarchy implied by the 49

various steps in the semiconductor manufacturing process [9]. 50

This hierarchy includes the following components: within-die 51

variations that arise within the same die; die-to-die or across 52

wafer variations that arise among die manufactured on the 53

same wafer; wafer-to-wafer variations that appear in wafers 54

within the same lot; and lot-to-lot variations that arise among 55

different lots. Because different variations are caused by 56

different physical phenomena, identification and estimation of 57

each variation component is critical for determining effective 58

variability reduction techniques [9], [15]. 59

The increased number of variability sources and the corre- 60

sponding necessary inline characterization test structures lead 61

to increases in the costs and time dedicated to variability 62

characterization during manufacturing [7]. Thus, there is a 63

real incentive for techniques that can reduce the number 64

of needed measurements without compromising the accuracy 65

of variability characterization. Spatial estimation techniques 66

achieve such reduction by substituting large numbers of phys- 67

ical characterization measurements (e.g., full wafer) with a 68

smaller number of measurements and then use this smaller set 69

of measurements to estimate the skipped measurements. 70

Given the parametric test measurements from the process 71

sensitive test structures, our objectives are: 1) to develop a 72

statistical model that accurately captures variability characteri- 73

zation measurements across the entire process; and 2) to utilize 74

the developed statistical model to devise spatial estimation 75

and variability decomposition techniques that are of benefit 76

to both process engineers and designers. We summarize our 77

contributions as following. 78

1) We show that multivariate normal (MVN) statistical 79

techniques can be used to model our variability mea- 80
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surements data across the entire process. In case the81

measurement data does not lend itself to MVN as-82

sumptions, we show that statistical data transformation83

techniques can enable the application of our modeling84

methods. We also describe a procedure to verify the85

accuracy of our multivariate model and to detect any86

outliers in the measurements.87

2) We observe that in medium-volume to high-volume88

semiconductor fabrication there are typically thousands89

of wafers that are generated using the same process90

steps. Thus, by exploiting the correlation structure91

among the measurements at different wafer locations,92

it is possible to devise a highly accurate framework for93

spatial estimation. Our proposed approach carries out94

parametric test measurements at a few sites and then uses95

the expectation-maximization algorithm to estimate the96

expected values for the measurements at all other sites.97

The proposed approach reduces drastically the volume98

of variability characterization measurements needed.99

3) We use the proposed spatial estimation technique to-100

gether with nested analysis of variance (ANOVA) tech-101

niques to decompose variability into systematic and ran-102

dom variability sources, and we show how the variability103

sources can be decomposed into: lot-to-lot, wafer-to-104

wafer, die-to-die and within-die components. We also105

provide analysis techniques to uncover the spatial struc-106

ture in these systematic and random sources.107

4) Using thousands of measurements from process sensitive108

test structures, we validate the proposed techniques and109

demonstrate their applicability and accuracy for timing110

and leakage variability modeling and estimation. We111

elucidate: 1) the trade-off between the accuracy of112

spatial estimation as a function of the number of physical113

characterization measurements that are available to the114

estimation algorithm; and 2) the impact of the sampling115

plan of the measurements on the accuracy of the esti-116

mation results.117

The organization of this paper is as follows. In Section118

II, we provide background information on spatial estimation119

techniques in the literature and nested analysis of variance120

(nested ANOVA) methods. In Section III, we develop the121

proposed multivariate statistical framework and describe the122

makeup of our set of variability measurement data. In Section123

IV, we describe our spatial estimation techniques which are124

based on the expectation-maximization algorithm. In Section125

V, we describe new methods to decompose the observed126

variations into systematic and random sources and explore the127

spatial structure of each of the sources. Finally, we summarize128

the main conclusions of this paper in Section VI.129

II. Background130

In this section, we discuss two relevant techniques that131

we use either as bases for some of our analysis techniques132

or for comparison purposes. In Subsection II-A, we discuss133

variograms as a technique to model spatial correlations and134

Kriging estimators as one potential technique for estimating135

missing data in spatial fields. In Subsection II-B, we discuss136

Fig. 1. Variograms of 10 random fields generated for a hypothetical field of
10 mm × 10 mm and with a λ = 0.5. The x-axis of the plot gives the lag (h)
and the y-axis gives the variogram function γ(h).

nested analysis of variance techniques which can be used to 137

estimate the contributions of various variability sources. 138

A. Variograms and Kriging-Based Estimation 139

Geostatistical-based techniques have been recently proposed 140

as a general framework for spatial variability estimation [18]. 141

In this framework the variability measurement data is assumed 142

to form a 2-D spatial Gaussian random field that is stationary, 143

i.e., the mean and variance of a random variable do not 144

depend on the variable’s location in the field, and that the 145

covariance C(Y (li), Y (lj)) between two random variables Y (li) 146

and Y (lj) at locations li and lj , respectively, depends only 147

on the (Euclidean) distance h = ‖li − lj‖ between the two 148

locations. That is 149

C(Y (li), Y (lj)) = σ2$(h)

where the parameter σ > 0 is a scale parameter (σ2 is 150

the variance of the field) and the function $ is called the 151

correlation function. A simple and natural model that allows 152

for correlation between different locations is the exponential 153

model. For this model, the correlation function decays expo- 154

nentially as a function of the distance h, that is 155

$(h) = e−λh λ > 0. (1)

Note that as λ increases the correlation decays faster as a 156

function of the distance. In this respect, λ can be interpreted as 157

the strength of correlation. Under this model, the random field 158

has three parameters: the mean level µ, the scale parameter 159

σ, and the strength of correlation λ. In many occasions, this 160

spatial correlation is expressed using the variogram function, 161

where the variogram γ(h) is defined as 162

2γ(h) = E[((Y (li) − Y (li + h))2] = 2σ2(1 − $(h)]. (2)

For example, Fig. 1 gives examples of variograms of ten 163

synthetic random fields generated for a hypothetical spatial 164

field with dimensions 10 mm × 10 mm with a λ = 0.5 and 165
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σ2 = 1. We use the procedure described by Hargreaves et al.166

[13] for generating the synthetic random fields.167

Kriging is a linear estimator that estimates the value at a168

desired unknown location of a random field as a weighted169

linear combination of the measurements at known locations170

of the field. That is171

Y∗(lu) =
k∑

i=1

αiY (li) (3)

where Y (li) are the measurements at the k known locations,172

Y∗(lu) is the estimate at the unknown location lu, and αi are173

the linear combination weights. Kriging estimation finds the174

optimal weights that minimize the error variance as computed175

by E[(Y∗(lu) −Y (lu))2]. It can be shown [24] that the optimal176

weights satisfy the following set of linear equations
177

k∑

j=1

αiC(Y (li), Y (lj)) = C(Y (lu), Y (li)) for i = 1, . . . , k. (4)

The covariances in the linear equations described by (4) can178

be computed directly through the variogram function of (2).179

Then, these k linear equations can be solved with standard180

linear algebra techniques to find the αi’s required for Kriging181

estimation as described by (3).182

While the utilization of Kriging estimators for semiconduc-183

tor spatial estimation has provided encouraging results [18],184

the technique cannot leverage measurements from various185

manufactured wafers toward the estimations required for a186

particular wafer. Kriging estimation is good for geostatistical187

studies where there is typically only one set of measurements188

on a given domain; however, in semiconductor fabrication189

there are typically hundreds and thousands of wafers that are190

generated roughly using the same process. The covariance191

structure between the various measurements on the different192

wafers can be exploited to provide far accurate measurements193

as we will demonstrate in Section IV.194

B. ANOVA Techniques195

The hierarchical decomposition of variability in semi-196

conductor fabrication mirrors the division of variability in197

many other batch manufacturing systems [17], [15]. In these198

systems, nested ANOVA methods are used to decompose199

the total observed variance into the components of inter-200

est. Consider the simplest case of batch manufacturing in201

which sample products are manufactured in batches, where202

each batch contains a number of samples. We would have203

a two-factor ANOVA design: Factor A is responsible for204

batch-by-batch variations, and Factor B is responsible for205

sample-to-sample variations. In this case, the change of206

Factor B is nested within the change of Factor A, which would207

be typically written as B(A). If yij denotes the measurement208

taken from sample j ∈ {1, . . . , s} of batch i ∈ {1, . . . , b} then209

yij can be expressed as yij = µ+αi+βj(i). The overall variability210

Fig. 2. Locations of PSROs within the layout of the chip.

as computed by the total sum of squares is equal to 211

SST =
b∑

i=1

s∑

j=1

(yij − µ)2. (5)

The within batch variability expressed as the sum of squares 212

is equal to 213

SSB(A) =
b∑

i=1

s∑

j=1

(yij − ȳi.)2 (6)

where ȳi. =
∑b

j=1 yij/b. The across batch variability expressed 214

as the sum of squares is equal to 215

SSA = s ×
b∑

i=1

(ȳi. − µ)2. (7)

It can be shown that SST = SSA + SSB(A) [17], and hence it is 216

possible to decompose the total variability into two factors or 217

components that reflect the hierarchical manufacturing struc- 218

ture. In an analogous method, it is possible to generalize the 219

given two-factor nested model to nested models with a larger 220

number of factors. We will use this technique in Section V to 221

decompose the total variability of our measurement data into 222

lot-to-lot, wafer-to-wafer, die-to-die, and within-die variations. 223

III. Proposed Variability Characterization Model 224

Parametric measurements occur throughout the fabrication 225

process to track its quality control [1], [11], [21]. These mea- 226

surements probe various process characteristics such as critical 227

dimensions, transistor thresholds, timing and leakage. Our 228

parametric data set comes from a 65 nm SOI semiconductor 229

process, and the obtained measurements include: 1) frequency 230

measurements from process sensitive ring oscillators (PSROs), 231

where the frequencies are normalized by the number of 232

stages in the ring oscillator design; and 2) leakage (IDDQ) 233

measurements. 234

Each instance of our production chip holds 14 PSROs 235

that are spatially organized along a grid that spans the die’s 236

area as shown in Fig. 2. The PSROs are used as a quick 237
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Fig. 3. Correlation between the measurements of PSRO number 4 and the
actual speed measurements of the part of the chip that it resides in.

parametric indicator of the overall process quality. Previous238

results in the literature demonstrate that the speeds of PSROs239

are strongly correlated with the speeds of their embedded240

chips [1], [12]. In Fig. 3, we give the measurements of the241

fourth PSRO together with the actual timing results of the242

part of the chip that it resides in. Our measurements indicate a243

very strong correlation with a coefficient of 0.89. The leakage244

of each chip is evaluated using one lumped measurement.245

Our data set consists of measurements from 244 wafers that246

span 19 wafer lots and where each wafer holds 111 die.247

In each wafer few parametric measurements are missing.248

These missing measurements arise from a number of reasons249

including, for example, errors in test probe landing locations,250

failure in test probes, and manufacturing defects. The locations251

of the missing measurements are typically random and differ252

depending on the wafer. Furthermore, a few wafers have253

received “special” processing steps that are different from the254

rest of the wafers.255

In this section, we describe the proposed multivariate statis-256

tical modeling framework that will be used to model our vari-257

ability measurements data. In Subsection III-A, we describe258

the main assumptions of our multivariate statistical techniques.259

To address the problem of variability measurements that might260

not lend themselves to our statistical assumptions, we propose261

data transformation techniques in Subsection III-B. In Sub-262

section III-C, we describe techniques to verify the correctness263

of our statistical assumptions and to detect any outliers in the264

data set of measurements.265

A. Multivariate Normal Modeling266

In this paper, we assume that a given data set of267

variability measurements comes from a MVN distribution268

with potentially a few outliers. Even if the data set does269

not lend itself directly to this assumption, we provide in270

Subsection III-B data transformation techniques that enable271

us to carry out such assumption safely. In our model, we272

consider the measurements obtained from a single wafer as273

an observation that is mathematically represented as a random274

vector w. Each observation vector w consists of measurements275

on p variables corresponding to the number of parametric test 276

sites on each wafer. The number of variables or sites is equal to 277

p = d×r, where d is the number of die on a wafer and r is the 278

number of measurements per die.1 In the MVN distribution, 279

the probability density function for a random vector w is equal 280

to 281

p(w) =
1

(2π)p/2
√

|"|
e− (w−µ)′"−1(w−µ)

2 (8)

where µ is a p× 1 vector that gives the expected value of the 282

random vector w, and " is the p × p covariance matrix. If 283

w1, w2, . . . , wn denote the measurements from some n wafers, 284

then the joint density function of all observations is the product 285

of the marginal normal densities 286

{
joint density

w1, w2, . . . , wn

}
=

n∏

j=1

p(wj)

=
1

(2π)
np
2 |"| n

2
e− 1

2

∑n
j=1(wj−µ)′"−1(wj−µ).

(9)

Equation (9) considered as a function of µ and " for 287

the fixed set of observations w1, w2, . . . , wn is called the 288

likelihood function, and 289

µ̂ =
1
n

n∑

j=1

wj (10)

"̂ =
1
n

n∑

j=1

(wj − µ̂)(wj − µ̂)′ (11)

are the maximum likelihood estimators (MLE) of µ and ", 290

respectively [16]. 291

B. Data Transformations 292

In many cases variability characterization data (e.g., leak- 293

age) might not appear MVN. In this case, it is necessary to 294

transform the data to make it MVN. Transforming the data is 295

just a re-expression of the data in different units [16]. The 296

appropriate transformation could be based on a theoretical 297

basis given the nature of the variability characterization data; 298

for example, leakage has exponential dependency on gate 299

length which may suggest using lognormal transformations. 300

Another approach for transformation is based on using the 301

data itself. This latter approach works when a physical model 302

is hard to describe accurately. One of the popular methods 303

for data transformation is the Box–Cox method [6]. For 304

a univariate distribution, the Box–Cox transformation of a 305

random variable x is given by 306

x(t) =






xt−1
t

t %= 0

ln x t = 0.
(12)

Given a set of observations x1, . . . , xn, the appropriate 307

transformation t is the one that maximizes the likelihood of the 308

1If the size of the data set (that is the number of observations) is relatively
small compared to p = d×r, then the data can be modeled using r independent
MVN distributions each with dimension p.
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Fig. 4. Plot of likelihood function as given by (13) as a function of t to find
the best transformation for the leakage measurements of the center die across
all wafers.

following expression:309

L(t) = −n

2
ln



1
n

n∑

j=1

(x(t)
j − x(t))2



 + (t − 1)
n∑

j=1

ln xj (13)

where x(t) is the arithmetic average value of transformed obser-310

vations. The maximum value of the likelihood function of (13)311

occurs when dL/dt = 0, and it can be readily found through312

numerical techniques. In our particular implementation, we313

use the Nelder–Mead algorithm which is an unconstrained314

nonlinear minimization algorithm [19]. For example, Fig. 4315

gives the likelihood of the leakage measurements of the316

center die from all wafers as a function of the Box–Cox317

transformation value t. From the plot, it is apparent that318

t = −1.5235 maximizes the likelihood function, and thus,319

it is the best choice to transform the leakage measurements320

to look normal. For illustration, we plot the delay-leakage321

measurements (before and after transformation) in Fig. 5.322

To verify that the Box–Cox transformation provides a323

better transformation technique than the standard logarithm324

transformation for leakage power, we compare the normality325

of the resultant data from the two transformations. We conduct326

the Kolmogorov–Smirnov test on both sets of the transformed327

data under the null hypothesis that the data has a normal328

distribution. The null hypothesis was rejected at the 5%329

significance level for the logarithm transformed data but was330

accepted for the Box–Cox transformed data. In accordance331

with the Kolmogorov–Smirnov test, we measure the maximum332

distance between the cumulative distribution function (CDF)333

of the transformed data and the ideal normal distribution as334

shown in Fig. 6. The Box–Cox transformed report a distance335

of 1.3 while the logarithm transformed data report a distance336

of 3.05, which further confirms that the Box–Cox transformed337

data is closer to normality than the standard logarithm trans-338

formation.339

As a wafer observation has many die rather than a single340

one, it is necessary to devise data transformation techniques341

that are applicable for multivariate observations. In this case, a342

power transformation must be selected for each of the variables343

of the multivariate distribution. If t1, t2, . . . , tp denote the344

power transformations of the p variables, then a multivariate345

observation wj = (xj1, xj2, . . . , xjp) is transformed to wj
(t) =346

Fig. 5. Application of Box–Cox transformation to transform nonnormal
leakage measurements (of the center die across all wafers) to normal data.

Fig. 6. Empirical CDF plot of leakage power after transformation.

(x(t1)
j1 , x

(t2)
j2 , . . . , x

(tp)
jp ). Each ti can be computed by using the 347

maximum likelihood approach on each individual variable as 348

given by (13). While applying the transformation on variables 349

individually does not ensure that the joint distribution is 350

normal, in many cases such approach is practically good 351

enough [16]. 352

C. Verifying the MVN Assumption 353

It is necessary to verify the MVN assumption on either the 354

original data or the transformed data set. A formal way to 355

assess the joint normality of a data set is based on calculating 356

the squared Mahalanobis distances d2
j of the observations, 357

where 358

d2
j = (wj − µ)′!−1(wj − µ) j = 1, . . . , n. (14)

Essentially (14) summarizes all the measurements of a wafer 359

by a single number. It can be shown [16] that 360

d2
j = (wj − µ)′!−1(wj − µ) =

p∑

i=1

z2
i (15)
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Fig. 7. (a) Chi-square plot for the entire data set. (b) Chi-square plot after
removing the few outlier wafers. The x-axis of the plots gives the chi-square
quantiles, and the y-axis gives the Mahalanobis distance quantiles.

where z1, z2, . . . , zp are independent standard normal vari-361

ables. Since
∑p

i=1 z2
i = χ2

p, then the Mahalanobis distance has a362

chi-square distribution with p-degrees of freedom. We can as-363

sess the multivariate normality of a data set of w1, w2, . . . , wn364

by plotting the chi-square plot of the Mahalanobis distances365

of its wafer observations (either directly or after an applicable366

data transformation). The chi-square plot is a generalization367

of the Q–Q plot for the case of MVN observations. We use368

the following standard procedure to construct the chi-square369

plot.370

1) Use (14) to compute the squared Mahalanobis distances371

for each of the n wafers. Then, order the computed dis-372

tances from smallest to largest d2
(1) ≤ d2

(2) ≤ · · · ≤ d2
(n).373

2) On a 2-D plane, plot the pairs (qp((j − 1
2 )/n), d2

j ),374

where qp((j − 1/2)/n) is the 100((j − 1
2 )/n) quantile375

of the standard chi-square distribution with p degrees376

of freedom.377

If the MVN assumption is indeed true, then the chi-square plot378

should be a straight line that passes through the origin of the379

plane with a slope equal to 1.380

To tune the fabrication process, process engineers occa-381

sionally experiment with some wafers to assess any proposed382

process changes. The measurements of these wafers, which383

are included with the rest of the measurements, may constitute384

unusual observations, or outliers, within the population of ob-385

servations. One method to detect outlier wafers is to examine386

the calculated Mahalanobis distances using (14) for unusually387

large numbers. In a chi-square plot, the outliers would be the388

points farthest from the origin.389

Fig. 7(a) gives the chi-square plot for our entire data set of390

PSRO frequency measurements. The x-axis of the plot gives391

the chi-square quantiles, and the y-axis gives the Mahalanobis392

distance quantiles. As it is clear from the figure, there are393

points with extreme values that are apart from the rest of the394

bulk points. Checking these points against the manufacturing395

recipes of the different wafers confirmed that the wafers cor-396

responding to these points received special processing steps.397

After removing these few outlier wafers from our data set, we398

re-plot the chi-square plot in Fig. 7(b). In contrast to Fig. 7(a),399

Fig. 7(b) displays quite a linear plot that passes close to the400

origin with a near unity slope. The linearity of the chi-square401

plot verifies that our MVN assumption is an accurate way to402

model the parametric measurements in hand.403

IV. Proposed Spatial Variability Estimation 404

Technique 405

Based on the proposed statistical model, we propose in 406

this section a new method for spatial estimation of semi- 407

conductor variability measurements. There are two reasons 408

that motivate spatial estimation of variability measurements. 409

The first reason is that in each wafer, a good number of 410

the parametric measurements are naturally missing because of 411

errors in test probe landing locations, failure in test probes, 412

and manufacturing defects. The locations of the missing 413

measurements are typically random and differ depending on 414

the wafer. The second reason is that process engineers could 415

intentionally skip some sites from measuring due to limitations 416

in the cost and time required for variability measurements. 417

Our method substitutes expensive physical measurements by 418

soft computational methods that are capable of accurately 419

estimating the expected values of the skipped measurements. 420

A. Proposed Method 421

To compute the MLE distribution parameters from incom- 422

plete data, we propose utilizing the expectation maximization 423

(EM) algorithm [10]. The EM algorithm enables parameter 424

estimation in multivariate statistical models with incomplete 425

data. The algorithm is an iterative procedure for estimating 426

the expected values of some unknown quantities, given the 427

values of some correlated, known quantities. EM assumes that 428

the quantities are represented as values in some parameterized 429

probability distribution such as the MVN distribution. The 430

EM algorithm involves two main steps. The two steps are 431

the Expectation Step and the Maximization Step. A general 432

framework for the EM algorithm is given as following. 433

1) Initialize the MLEs of distribution parameters (µ̂ 434

and "̂). 435

2) Repeat until convergence. 436

a) E-Step: estimate the Expected value of the missing 437

measurements given the current MLEs (µ̂ and "̂) 438

of the distribution. 439

b) M-Step: given the expected estimates of the miss- 440

ing measurements, re-estimate the distribution pa- 441

rameters (µ̂ and "̂) to Maximize the likelihood of 442

the data. 443

Because the results of the E-Step and M-Step depend 444

on each other, the EM algorithm is iterated a number of 445

times until the convergence of µ̂ and "̂. The key to the 446

success of the EM algorithm lies in the operation of the 447

E-Step. To understand how the estimation is carried out in 448

the E-Step, it is necessary to introduce some notation. For 449

an observation vector wj with some missing values, let wu
j 450

denote the unknown or missing measurements, and let wk
j 451

denote the known measurements. Thus, wj can be partitioned 452

as wj =
[

wu
j

wk
j

]
, and accordingly µ̂ and "̂ can be partitioned 453

as µ̂ =
[

µ̂u

µ̂k

]
and "̂ =

[
"̂u,u "̂u,k

"̂k,u "̂k,k

]
. Then, the conditional 454

probability of wu
j given wk

j is normal, where the 455

mean of wu
j = µ̂u + "̂u,k"̂

−1
k,k(wk

j − µ̂k). (16)
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Fig. 8. Estimating skipped PSRO measurements.

Equation (16) is the key method used for the E-Step, and456

it can be intuitively explained as follows (formal derivations457

can be found in [10] and [16]). The equation basically says458

that the expected values for the missing measurements of459

wafer j are equal to the estimated means at their locations µ̂u
460

plus some term that estimates the deviations of the unknown461

measurements of wafer j from their mean µ̂u. This term is462

equal to the deviations of the known measurements of wafer j463

from their mean (wk
j − µ̂k) multiplied by some weight. This464

weight is the product of:465

1) the covariance, !̂u,k, between the unknown and the466

known measurements, which reflects the dependencies467

between the known measurements and the unknown468

measurements;469

2) the inverse of the variance of the known measurements470

!̂−1
k,k, which reduces the contribution of the known471

measurements toward the estimation if they have large472

variances, and consequently they should not be quite473

“trusted.”474

For example, Fig. 8(a) shows a visual imagery of the475

PSRO variability measurements if all the sites of a wafer476

are measured. Fig. 8(b) shows the measured variability after477

skipping the measurements of 68 die leading to a reduction478

factor of 2.53× in the number of required measurements.479

Fig. 8(d) shows the estimations of the skipped measurements480

with an average estimation error of 0.69%. Fig. 8(c) shows the481

test results after skipping the measurements of 93 die. Fig. 8(e)482

gives the expected estimations of the skipped measurements483

with an average estimation error of 1.17%.484

Another interesting aspect of the EM algorithm is that it485

also computes the covariance of the estimated measurements486

as follows:487

covariance of wu
j = !̂u,u − !̂u,k!̂

−1
k,k!̂k,u. (17)

The diagonal elements of the covariance matrix of (17) give 488

the variances in the estimations of the missing measurements. 489

The ability of the EM algorithm to calculate the variances in 490

its estimations is useful as it gives the confidence intervals of 491

the EM algorithm in its estimation of a skipped measurement. 492

Small variances indicate that the EM algorithm is confident 493

in its estimation of the missing measurements, and large 494

variances indicate that the estimated values for the missing 495

measurements might significantly deviate from their true val- 496

ues. The calculated variance of an estimated measurement 497

provides a confidence interval where the true measurement of 498

a skipped site would likely fall. These confidence intervals 499

provide “safety nets” for the estimated measurements. For 500

example, if we denote an estimated measurement of a skipped 501

site by ms and the variance in estimation by σs,s then one can 502

be almost certain that the true value of the measurement at the 503

skipped site will fall between ms − 3
√

σs,s and ms + 3
√

σs,s. 504

B. Empirical Validation 505

1) First Experiment—Random Sampling: To illustrate the 506

performance of the proposed EM-based spatial estimation 507

algorithm, we conduct a first experiment where we assess the 508

accuracy of the estimations as a function of the percentage 509

of skipped variability measurements. The main steps of our 510

experiment are given as following. 511

1) We process all original wafers and intentionally delete 512

from each wafer a fixed percentage of its measurements. 513

The locations of these deleted measurements are random 514

both within each wafer and across all wafers. 515

2) We run the EM algorithm to estimate the expected values 516

of all deleted measurements. The EM algorithm only 517

uses the modified wafers; i.e., it has no information 518

about the original set of measurements. 519

3) We compare the EM estimations against the measure- 520

ments from the original wafers. 521

We report in Table I the main comparison results of the EM 522

algorithm as a function of the percentage of the measurements 523

deleted. We report these comparison results for both the PSRO 524

and leakage measurements. These results include: 1) the nor- 525

malized average estimation error where the estimation error 526

is defined as the absolute difference between an estimation 527

and its true value normalized with respect to the true value; 2) 528

the normalized standard error which is the standard deviation 529

of the estimation errors normalized to the standard deviation 530

of the measurements; 3) the estimation error threshold where 531

50% of the all estimations lie below it (i.e., median error); and 532

4) the estimation error where 95% of the all estimations lie 533

below it. For clarification, the first line in the table indicates 534

that the average estimation error is 0.59% when 10% of the 535

measurement are deleted, and that 50% of the estimation errors 536

are below 0.36%, and that 95% of the estimation errors are 537

below 1.85%. For leakage power measurements, we apply the 538

appropriate Box–Cox transformations before the execution of 539

the EM algorithm, and then apply the inverse transformations 540

after the EM algorithm computes the estimated measurements. 541

The results in Table I lead to a number of insightful 542

conclusions on the performance of the proposed EM algorithm 543



8 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 23, NO. 3, AUGUST 2010

TABLE I

Statistics of Estimation Errors for PSRO and Leakage Skipped Measurements Using Random Sampling

Within and Across All Wafers

Skipped PSRO Leakage
Normalized Normalized Error Threshold Normalized Normalized Error Threshold
Avg. Error Std. Dev. 50% 95% Avg. Error Std. Dev. 50% 95%

10% 0.59% 1.65% 0.36% 1.84% 3.91% 0.17% 2.59% 11.69%
20% 0.69% 1.73% 0.43% 2.15% 4.91% 0.97% 3.02% 13.37%
30% 0.71% 1.79% 0.44% 2.17% 4.88% 0.21% 3.15% 14.93%
40% 0.73% 1.85% 0.46% 2.24% 5.24% 0.24% 3.36% 16.10%
50% 0.75% 1.92% 0.49% 2.21% 5.53% 0.26% 3.54% 17.12%
60% 0.77% 1.95% 0.51% 2.27% 6.04% 0.31% 3.85% 18.87%
70% 0.86% 2.00% 0.59% 2.45% 7.04% 0.89% 4.29% 20.70%
80% 1.06% 2.17% 0.78% 2.86% 9.56% 2.11% 5.75% 24.97%
90% 1.98% 3.30% 1.50% 5.45% 16.44% 1.75% 11.22% 44.20%

We report the following metrics: normalized average estimation error (normalized average error), normalized standard error (normalized standard deviation),
and the estimation error threshold (error threshold).

Fig. 9. Sampling plan across all wafers with a pitch of 3. Red locations are
sampled. Green locations are skipped.

as a spatial estimator.544

1) The tight values in estimation errors demonstrate that545

the proposed EM algorithm provides very accurate es-546

timation results even when large numbers of the mea-547

surements are skipped. Thus, it is possible to used the548

proposed method to drastically cut down the required549

parametric measurements.550

2) The true values of the vast majority (95%) of the skipped551

PSRO measurements lie within a tight range of the552

estimations provided by the EM algorithm which further553

confirmins the accuracy of the proposed method.554

3) While the leakage estimations appear to be less accu-555

rate than the estimations of the PSRO measurements556

in absolute values, the errors in leakage estimation557

measurements are relatively better as measured by the558

normalized standard deviation. That is, the spread in559

leakage estimation errors normalized by the overall560

spread in leakage measurements is much smaller than561

the spread of PSRO estimation errors normalized by the562

overall spread in PSRO measurements. In general, it is563

necessary to be careful when power data transformations564

are applied because small errors in estimations might be565

magnified after the appropriate inverse data transforma-566

tions are applied.567

2) Second Experiment—Identical Sampling: In our first568

experiment the skipped or missing measurements were569

Fig. 10. Error in estimation as function of the available number of wafers.

random across all wafers, and thus, accurate estimation is 570

possible as the locations of the missing measurements of 571

one wafer are likely to have measurements in some other 572

wafers. In some cases (e.g., in process control monitoring), 573

the locations of the sampled measurements and the skipped 574

locations are the same across all wafers. For example, Fig. 575

9 shows a sampling plan with a pitch of 3. In this case, 576

to estimate the electrical characteristics at wafer locations 577

that are not sampled, it is necessary to know the mean (µ) 578

and covariance structure (!) in order to utilize (16). The 579

mean and covariance structures could be obtained from either 580

previously fully characterized wafers or using empirical 581

models (e.g., variograms) based on historical fabrication data. 582

In this second experiment, we repeat experiment 1 but using 583

identical wafer sampling plans with different pitches. We 584

report the results in Table II. The results show competitive 585

estimation results with the random sampling results (Table I) 586

of the first experiment. In this experiment, we used the 587

known mean and covariance structures before sampling the 588

measurements. 589

590

3) Third Experiment—Impact of Data Set Size: As a third 591

experiment, we assess the accuracy of EM-based estimation 592

as a function of the available number of wafers. It is expected 593

that the larger the number of available wafer, the more 594

accurate the estimation will be. This experiment attempts 595

to quantify this intuitive reasoning. For this experiment, we 596

delete 20% of the measurements as outlined in the first 597
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TABLE II

Statistics of Estimation Errors for PSRO and Leakage Skipped Measurements Using Identical

Sampling Across All Wafers

Pitch Skipped PSRO Leakage
Normalized Normalized Error Threshold Normalized Normalized Error Threshold
Avg. Error Std. Dev. 50% 95% Avg. Error Std. Dev. 50% 95%

2 76.58% 0.56% 1.30% 0.38% 1.55% 4.23% 0.18% 2.63% 13.71%
3 89.19% 0.94% 2.09% 0.59% 3.12% 7.65% 0.39% 4.15% 27.83%
4 94.59% 1.12% 2.07% 0.82% 3.02% 7.91% 0.29% 5.48% 23.32%
5 96.40% 1.38% 2.46% 1.05% 3.68% 9.86% 0.34% 7.06% 28.52%

We report the following metrics: normalized average estimation error (normalized average error), normalized standard error
(normalized standard deviation), and the estimation error threshold (error threshold).

Fig. 11. Performance of EM algorithm vs. Kriging estimation and cubic b-spline interpolation in estimated skipped PSRO parametric test measurements.

Fig. 12. Performance of EM algorithm vs. Kriging estimation and cubic b-spline interpolation in estimating skipped leakage parametric test measurements.

experiment, and then we execute the EM algorithm on:598

1) the entire 244 wafers; and 2) two independent subsets of599

122 wafers each. We report the absolute average estimation600

error as a function of the number of wafers in Fig. 10. The601

results show that using all wafers toward the estimations602

reduces the error from an average of 0.92% to 0.69% for603

the PSRO measurements and from 6.82% to 4.91% for the604

leakage measurements.605

606

4) Fourth Experiment—Comparisons: It is informative607

to compare the estimation accuracy of the proposed EM-608

based algorithm against existing variability spatial estimation609

techniques. For this purpose, we implement both the Kriging610

algorithm as summarized in Section II-A, and classical cubic611

b-spline interpolation. Cubic b-spline interpolation estimates612

the skipped measurements by convolving a 2-D cubic b-spline613

function with the field measurements. In contrast to the pro-614

posed EM method, these methods use only the measurements615

of a given wafer to interpolate the missing measurements616

in the same wafer. Such approaches have an advantage of617

computational runtime but they suffer from low accuracy,618

especially when the number of missing measurements in a619

wafer increases. We report in Figs. 11 and 12 the average 620

absolute error of the EM algorithm PSRO and leakage esti- 621

mations, respectively, vs. the estimations of both the Kriging 622

estimation and cubic b-spline interpolations. The results show 623

a stable, superior performance of the EM algorithm in com- 624

parison to existing methods. Kriging estimation and cubic b- 625

spline interpolations deteriorate drastically when only a few 626

of measurements are available. 627

Our method is more powerful than spatial-based Kriging 628

estimators [18] because it makes use of the entire data set, 629

i.e., measurements from all wafers, to estimate the missing 630

measurements for each wafer. Note that our method does not 631

make any explicit use of the spatial locations on the wafers, so 632

even if the measurements are permuted across all wafers in the 633

same manner (e.g., measurements of two locations across all 634

wafers are swapped), our method will still correctly estimate 635

the missing values. Kriging estimators are good for geospatial 636

studies where there is typically only one set of measurements 637

on a given spatial field; however, in semiconductor fabrication 638

there are typically hundreds and thousands of wafers that 639

are generated roughly using the same process. Our proposed 640

method exploits the variance-covariance structure between the 641
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TABLE III

Comparison Between Different Estimation Techniques

Expectation-Maximization Kriging Spatial Interpolation
Advantages • extremely accurate estimation • accurate only for few missing measurements • accurate only when few missing

• tolerates large volume of missing data • computational runtime measurements are present
• provides uncertainty estimates • provides uncertainty estimates • computational runtime
• works even with lack of spatial structure

Disadvantages • computational runtime • accuracy deteriorates with • accuracy deteriorates with
• needs sizable number of wafers larger volume of missing data larger volume of missing data

to compute accurate results • fails when no spatial structure exists • fails when no spatial structure exists
• no guarantee on estimation certainty
• worst estimation accuracy

Fig. 13. Decomposition of the process variation into systematic and random residuals.

various measurements on the different wafers to estimate642

the missing measurements. Table III provides a summary of643

comparison between the proposed EM-based spatial estimation644

technique and previous approaches. Furthermore, our model is645

more accurate and versatile than deterministic approaches [25]646

that attempt to fit a deterministic mathematical model that is647

a function of spatial location onto a given data set. In contrast648

to deterministic approaches, our approach does not require649

calculating fitting constants that generally change depending650

on the wafer, and besides estimating the measurements, it651

provides confidence intervals for the estimations.652

V. Proposed Variability Decomposition Technique653

Given the completed data set and the MLEs (µ̂ and !̂) of654

the underlying MVN distribution, the objective of this section655

is: 1) to carry out further analysis on the spatial structure656

of both µ̂ and !̂; and 2) to provide hierarchical variability657

decomposition techniques. The vector µ̂ = (µ̂1, . . . , µ̂p)658

gives the mean value of the parameter under test for659

every location on the wafers; thus, µ̂ can be regarded as660

the result of the systematic manufacturing sources, and it661

represents the expected wafer measurements across the entire662

process. On the other hand, the residual of each wafer,663

rj = wj − µ̂ = (xj1 − µ̂1, xj2 − µ̂2, . . . , xjp − µ̂p), can be664

considered as the result of the process variations that impact665

each wafer differently. These residuals form a spatial field666

with a correlation structure between its variables at the 667

different p locations. This correlation structure is captured 668

by the covariance matrix !̂ of the MVN distribution. Fig. 13 669

shows the measurements of two wafers broken into two 670

parts: 1) the µ̂ part which is shared between the two wafers 671

(and any other wafer as well); and 2) the random residual 672

part which is unique for every wafer. Thus, a measurement 673

xji = µi + rij on wafer j and location (or die) i is the sum 674

of two numbers that are contributed from the systematic and 675

variability sources. 676

677

A. Variability Decomposition Using Nested ANOVA 678

To decompose the variability sources into a hierarchy of lot- 679

to-lot, wafer-to-wafer, die-to-die and within-die variations, we 680

consider a four-factor nested ANOVA model. If rlkji denotes 681

the random residual at site i ∈ {1, · · · s} of die j ∈ {1, . . . , p} 682

located on wafer k ∈ {1, . . . , w} of lot l ∈ {1, . . . , L} then 683

the nested ANOVA model decomposes variability as 684

rlkji = τl + βk(l) + γj(kl) + εi(jkl) (18)

where τl is the lot effect, and βk(l) is the wafer effect nested 685

under the lth lot effect, γj(kl) are the die j effect nested under 686

the kth die and lth wafer effects, and finally εi(jkl) is the site ith 687

effect nested under the jth die, the kth wafer, and the lth lot 688

effects. The sum of squares due to lot-lot variability is given by 689
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Fig. 14. Proposed flow for variability decomposition.

SSlot−to−lot = w × p × s
∑

l

(r̄l... − r̄....)2 (19)

= w × s × p
∑

l

(r̄l...)2 (20)

with L−1 degrees of freedom and where rl... =
∑

k

∑
j

∑
i rlkji.690

Note that (19) has been simplified to (20) because we already691

decomposed the measurement data into systematic and resid-692

ual variability sources which leads to residuals with a mean693

of zero. The sum of squares due to wafer-to-wafer variability694

is given by695

SSwafer−to−wafer = p × s
∑

l

∑

k

(r̄lk.. − r̄l...)2 (21)

with L × (w − 1) degrees of freedom and where rlk.. =696 ∑
j

∑
i rlkji. The sum of squares of due to die-to-die variability697

SSdie−to−die = s
∑

l

∑

k

∑

j

(r̄lkj. − r̄lk..)2 (22)

with L × w × (p − 1) degrees of freedom and rlkj. =
∑

i rlkji.698

Finally within-die variability is given by699

SSwithin−die =
∑

l

∑

k

∑

j

∑

i

(rlkji − r̄lkj.)2 (23)

with p × L × w × (s − 1) degrees of freedom. The total vari-700

ability SST =
∑

l

∑
k

∑
j

∑
i(rlkji − r̄....)2 =

∑
l

∑
k

∑
j

∑
i r

2
lkji701

with Lwps − 1 degrees of freedom. Thus, the contribu-702

tion of lot-to-lot variability is equal to SSlot−to−lot/SST ;703

the contribution of wafer-to-wafer variability is equal to704

SSwafer−to−wafer/SST , the contribution of die-to-die variability705

is equal to SSdie−to−die/SST , and finally the within-die con-706

tribution is SSwithin−die/SST . We compute these contributions707

for our data set after filling all missing values in accordance708

with the flow of Fig. 14 and give the results in the pie chart709

given in Fig. 15.710

Fig. 15. Budgeting the contribution of process variations from within-die,
die-to-die, wafer-to-wafer, and lot-to-lot sources.

B. Spatial Analysis of Systematic Sources 711

The vector µ̂ gives the mean of the PSRO frequency mea- 712

surements at each wafer location as illustrated in Fig. 16(a). 713

The spatial dependency in µ̂ can be observed by plotting the 714

values of µ̂ as a function of the radius from the center of 715

the wafer as shown in Fig. 16(b). The plot shows that the 716

average values of the measurements generally decreases as the 717

distance from the center increases. This systematic dependency 718

can be also expressed by a quadratic function where the 719

systematic component uj at location (x, y) can be captured 720

as µj = ax2 + by2 + cxy + dx + ey + f , where a, b, c, d, e, and f 721

are constants that can be found using least square fitting [25]. 722

C. Spatial Analysis of Random Sources 723

To reveal insights into the wafer-level spatial structure of 724

the residuals, we propose using experimental variograms. Var- 725

iograms can reveal any spatial trends in the random variations. 726

Variograms have been previously proposed in the literature to 727

analyze the spatial trends of within-die process variations [13], 728

[18], [28]. In experimental variograms plots, the variance in 729

measurements is plotted as function of the distance, or lag h, 730

between them. Since, we have subtracted the mean µ̂ from the 731

measurements, we can directly express the variogram function 732

of the residuals of some wafer j as follows: 733

γj(h) =
1

2Nj(h)

∑

Nj(h)

(rj(l) − rj(l + h))2 (24)

where rj(l) is the residual of wafer j at location l, rj(l + h) 734

is the residual of wafer j at location l + h, and Nj(h) gives 735

the number of measurements that are at distance h from 736

each other on wafer j. If there is a spatial structure in the 737

data, then we would expect nearby measurements to have 738

similar values, and thus, γj(h) would be close to zero in this 739

case. As the distance between the measurements increases, 740

the measurements would be more independent, and thus, 741

γj(h) would increase (potentially leveling up at a particular 742

value). Fig. 17 gives the variograms of wafers from three 743

different lots. The variograms reveal a spatial correlation 744

structure in the random residuals, where the independency in 745

the measurements increases exponentially (or equivalently the 746

dependency between the measurements decays exponentially) 747

as the distance between the measurements increases. The 748

computed experimental variograms show the same trends as 749

the synthetic theoretical variograms plotted earlier in Fig. 1. 750

More interestingly, Fig. 17 shows that variograms of wafers 751
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Fig. 16. (a) Mean of the parametric measurements (µ̂) as a function of its location on the wafer. (b) Average value (speed) of the parameter under test as a
function of the distance (radius) from the center of the wafer.

Fig. 17. Variograms for the wafers in the first three lots. The first lot
variograms are given by the solid blue lines. The second lot variagrams are
given by the red dashed lines. The third lot variograms are given by the green
short dotted lines.

that come from the same lot share shape similarities more than752

variograms of wafers in different lots.753

VI. Conclusion and Future Work754

In this paper, we proposed a novel modeling technique755

to characterize process variability parametric measurements756

based on statistical multivariate techniques. We proposed757

using the expectation-maximization algorithm to estimate the758

expected values of the missing test measurements, and to759

accurately estimate the statistical model parameters. Using chi-760

square plots, we proposed techniques to verify the accuracy761

of our model and to detect any outliers. We also carried out762

further analysis to reveal spatial trends in the systematic and763

random sources of the variations. We elucidated the trade-764

off between direct measurements and estimation as a function765

of the number of available measurements, and contrasted the766

performance of our proposed method against other spatial767

estimation techniques such as geospatial Kriging estimation768

and traditional cubic b-spline interpolation. Finally, we pro-769

posed a variability decomposition flow that uses our spatial770

estimation techniques together with nested ANOVA method, 771

to split the variability into lot-to-lot, wafer-to-wafer, die-to- 772

die, and within-die components. We quantified each of these 773

components and provided analysis techniques to uncover their 774

spatial structure. 775

Future work includes researching further applications for 776

our techniques. For example, one possible application is part- 777

average testing (PAT) which is used to remove electronic 778

parts with abnormal characteristics from the semiconductors 779

supplied to the automative electronic industry. Most PAT ap- 780

plications assume Gaussian distribution for the electrical mea- 781

surements. In case the electrical measurements (e.g., leakage) 782

are not Gaussian, one possible future work is to incorporate 783

the Box–Cox transformation into PAT procedures. 784
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